Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Analyst ; 144(5): 1840-1849, 2019 Feb 25.
Article in English | MEDLINE | ID: mdl-30681077

ABSTRACT

Aptamers are envisioned to serve as powerful synthetic substitutes to antibodies in a variety of bioanalytical assay formats. However, lateral flow assays (LFAs) remain dominated by antibody-based strategies. In this study, a LFA for the detection of cholera toxin as a model analyte is developed and optimized using a synthetic aptamer and a naturally occurring receptor as biorecognition elements and directly compared with solely aptamer and aptamer and antibody-based alternative approaches. The aptamer (CT916) recently selected by our group, GM1 receptors and an anti-cholera toxin antibody were evaluated. Relying solely on molecules that can easily be synthesized while aiming for high sensitivity, we applied a novel combination of capture aptamer and GM1 cell receptor-labeled liposomes for cholera toxin detection, achieving a limit of detection (LOD) of 2 ng ml-1 (3σ)/10 ng ml-1 (visual) in ∼15 min. To put our novel aptasensor into perspective, we developed a competitive lateral flow assay, exploiting the competition of cholera toxin in solution with immobilized cholera toxin for binding of aptamer-coated gold nanoparticles (AuNPs) (LOD = 51 ng ml-1 (3σ)/100 ng ml-1 (visual), assay time ∼10 min). As dual simultaneously binding aptamers were not available, we designed aptamer antibody pair-based lateral flow assays using aptamer-coated AuNPs which yielded a LOD of 5 ng ml-1 (by the 3σ rule)/10 ng ml-1 (visual) in a 10 min assay and an even better LOD of 0.6 ng ml-1 (3σ)/1 ng ml-1 (visual), with an ∼20 min total assay time. All set-ups are highly specific and provide an excellent alternative for cholera toxin detection in places where professional knowledge and sophisticated equipment are not readily available and cost efficient, simple, and rapid tests are needed, while the combination of GM1 cell receptor-labeled liposomes and aptamers is clearly the most promising.


Subject(s)
Aptamers, Nucleotide/chemistry , Cholera Toxin/analysis , Immunoassay/methods , Animals , Antibodies/immunology , Base Sequence , Cholera Toxin/immunology , Goats , Gold/chemistry , Limit of Detection , Liposomes/chemistry , Metal Nanoparticles/chemistry , Rabbits , Receptors, Cell Surface/chemistry
2.
Microb Biotechnol ; 11(3): 510-526, 2018 05.
Article in English | MEDLINE | ID: mdl-29488359

ABSTRACT

This study compared the secretomes (proteins exported out of the cell) of Propionibacterium freudenreichii of different origin to identify plausible adaptation factors. Phylosecretomics indicated strain-specific variation in secretion of adhesins/invasins (SlpA, InlA), cell-wall hydrolysing (NlpC60 peptidase, transglycosylase), protective (RpfB) and moonlighting (DnaK, GroEL, GaPDH, IDH, ENO, ClpB) enzymes and/or proteins. Detailed secretome comparison suggested that one of the cereal strains (JS14) released a tip fimbrillin (FimB) in to the extracellular milieu, which was in line with the electron microscopy and genomic analyses, indicating the lack of surface-associated fimbrial-like structures, predicting a mutated type-2 fimbrial gene cluster (fimB-fimA-srtC2) and production of anchorless FimB. Instead, the cereal strain produced high amounts of SlpB that tentatively mediated adherent growth on hydrophilic surface and adherence to hydrophobic material. One of the dairy strains (JS22), producing non-covalently bound surface-proteins (LspA, ClpB, AraI) and releasing SlpA and InlA into the culture medium, was found to form clumps under physiological conditions. The JS22 strain lacked SlpB and displayed a non-clumping and biofilm-forming phenotype only under conditions of increased ionic strength (300 mM NaCl). However, this strain cultured under the same conditions was not adherent to hydrophobic support, which supports the contributory role of SlpB in mediating hydrophobic interactions. Thus, this study reports significant secretome variation in P. freudenreichii and suggests that strain-specific differences in protein export, modification and protein-protein interactions have been the driving forces behind the adaptation of this bacterial species.


Subject(s)
Bacterial Proteins/analysis , Culture Media/chemistry , Propionibacterium freudenreichii/metabolism , Proteome/analysis , Adhesins, Bacterial/analysis , Osmotic Pressure , Protein Transport , Sodium Chloride/metabolism
3.
J Biotechnol ; 269: 35-42, 2018 Mar 10.
Article in English | MEDLINE | ID: mdl-29408200

ABSTRACT

Aptamers are single-stranded DNA or RNA oligonucleotides, which have been emerging as recognition elements in disease diagnostics and food control, including the detection of bacterial toxins. In this study, we employed the semi-automated just in time-selection to identify aptamers that bind to cholera toxin (CT) with high affinity and specificity. CT is the main virulence factor of Vibrio cholerae and the causative agent of the eponymous disease. For the selected aptamers, dissociation constants in the low nanomolar range (23-56 nM) were determined by fluorescence-based affinity chromatography and cross-reactivity against related proteins was evaluated by direct enzyme-linked aptamer assay (ELAA). Aptamer CT916 has a dissociation constant of 48.5 ±â€¯0.5 nM and shows negligible binding to Shiga-like toxin 1B, protein A and BSA. This aptamer was chosen to develop a sandwich ELAA for the detection of CT from binding buffer and local tap water. Amine-C6- or biotin-modified CT916 was coupled to magnetic beads to serve as the capture element. Using an anti-CT polyclonal antibody as the reporter, detection limits of 2.1 ng/ml in buffer and 2.4 ng/ml in tap water, with a wide log-linear dynamic range from 1 ng/ml to 1000 ng/ml and 500 ng/ml, respectively, were achieved.


Subject(s)
Aptamers, Nucleotide , Cholera Toxin , Immunomagnetic Separation/methods , Aptamers, Nucleotide/analysis , Aptamers, Nucleotide/chemistry , Aptamers, Nucleotide/metabolism , Cholera Toxin/chemistry , Cholera Toxin/metabolism , Chromatography, Affinity , Escherichia coli , Immobilized Proteins/chemistry , Immobilized Proteins/metabolism , Limit of Detection , Magnetics , SELEX Aptamer Technique
4.
J Agric Food Chem ; 63(36): 8050-7, 2015 Sep 16.
Article in English | MEDLINE | ID: mdl-26306797

ABSTRACT

Aerobic spores pose serious problems for both food product manufacturers and consumers. Milk is particularly at risk and thus an important issue of preventive consumer protection and quality assurance. The spore-former Bacillus cereus is a food poisoning Gram-positive pathogen which mainly produces two different types of toxins, the diarrhea inducing and the emetic toxins. Reliable and rapid analytical assays for the detection of B. cereus spores are required, which could be achieved by combining in vitro generated aptamers with highly specific molecular biological techniques. For the development of routine bioanalytical approaches, already existing aptamers with high affinity to B. cereus spores have been characterized by surface plasmon resonance (SPR) spectroscopy and fluorescence microscopy in terms of their dissociation constants and selectivity. Dissociation constants in the low nanomolar range (from 5.2 to 52.4 nM) were determined. Subsequently, the characterized aptamers were utilized for the establishment and validation of an aptamer-based trapping technique in both milk simulating buffer and milk with fat contents between 0.3 and 3.5%. Thereby, enrichment factors of up to 6-fold could be achieved. It could be observed that trapping protocol and characterized aptamers were fully adaptable to the application in milk. Due to the fact that aptamer selectivity is limited, a highly specific real time PCR assay was utilized following trapping to gain a higher degree of selectivity.


Subject(s)
Bacillus cereus/isolation & purification , Milk/microbiology , Real-Time Polymerase Chain Reaction/methods , SELEX Aptamer Technique/methods , Spores, Bacterial/isolation & purification , Animals , Bacillus cereus/genetics , Cattle , Food Contamination/analysis , Milk/chemistry , Spores, Bacterial/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...