Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Radiother Oncol ; 196: 110238, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38527626

ABSTRACT

BACKGROUND: FLASH-radiotherapy (FLASH-RT) is an emerging modality that uses ultra-high dose rates of radiation to enable curative doses to the tumor while preserving normal tissue. The biological studies showed the potential of FLASH-RT to revolutionize radiotherapy cancer treatments. However, the complex biological basis of FLASH-RT is not fully known yet. AIM: Within this context, our aim is to get deeper insights into the biomolecular mechanisms underlying FLASH-RT through Fourier Transform Infrared Microspectroscopy (FTIRM). METHODS: C57Bl/6J female mice were whole brain irradiated at 10 Gy with the eRT6-Oriatron system. 10 Gy FLASH-RT was delivered in 1 pulse of 1.8µs and conventional irradiations at 0.1 Gy/s. Brains were sampled and prepared for analysis 24 h post-RT. FTIRM was performed at the MIRAS beamline of ALBA Synchrotron. Infrared raster scanning maps of the whole mice brain sections were collected for each sample condition. Hyperspectral imaging and Principal Component Analysis (PCA) were performed in several regions of the brain. RESULTS: PCA results evidenced a clear separation between conventional and FLASH irradiations in the 1800-950 cm-1 region, with a significant overlap between FLASH and Control groups. An analysis of the loading plots revealed that most of the variance accounting for the separation between groups was associated to modifications in the protein backbone (Amide I). This protein degradation and/or conformational rearrangement was concomitant with nucleic acid fragmentation/condensation. Cluster separation between FLASH and conventional groups was also present in the 3000-2800 cm-1 region, being correlated with changes in the methylene and methyl group concentrations and in the lipid chain length. Specific vibrational features were detected as a function of the brain region. CONCLUSION: This work provided new insights into the biomolecular effects involved in FLASH-RT through FTIRM. Our results showed that beyond nucleic acid investigations, one should take into account other dose-rate responsive molecules such as proteins, as they might be key to understand FLASH effect.


Subject(s)
Mice, Inbred C57BL , Animals , Female , Mice , Spectroscopy, Fourier Transform Infrared/methods , Brain/radiation effects , Principal Component Analysis , Brain Neoplasms/radiotherapy , Radiotherapy Dosage
2.
J Environ Radioact ; 263: 107178, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37060833

ABSTRACT

Tobacco products contain radioactive 210Pb and 210Po which can be transferred from the filler to the mainstream smoke. When inhaled, they can contribute to the radioactive dose to the lungs and are suspected to significantly contribute to lung cancer from smoking. Currently, no data are available on the radioactive risk of the heated tobacco products (HTP). However, due to the relatively high heat involved in some of these devices, there are concerns about the volatility of polonium particles. Here we used data on the 210Po and 210Pb content in tobacco smoke along with biokinetic and dosimetric models to compute the effective dose induced by conventional smoking and by using an HTP device (PMI IQOS system). Results show that conventional smoking of one pack per day induces a dose to the lung of about 0.3 mSv/year. This dose decreases by a factor of ten (0.03 mSv/year) for the IQOS system. However, this dose reduction is not obtained by specific countermeasures but by the fact that the IQOS system heats only 15% of the tobacco filler to the target temperature of 330 °C. When heated homogeneously to 300 °C, both conventional and Heets (IQOS) cigarettes release about 80% of the 210Po from the tobacco, leading to similar doses to lungs.


Subject(s)
Radiation Monitoring , Tobacco Products , Tobacco Smoke Pollution , Lead , Smoke/analysis , Lung/chemistry
3.
ACS ES T Water ; 2(10): 1688-1696, 2022 Oct 14.
Article in English | MEDLINE | ID: mdl-36277120

ABSTRACT

Actinides accumulate within aquatic biota in concentrations several orders of magnitude higher than in the seawater [the concentration factor (CF)], presenting an elevated radiological and biotoxicological risk to human consumers. CFs currently vary widely for the same radionuclide and species, which limits the accuracy of the modeled radiation dose to the public through seafood consumption. We propose that CFs will show less dispersion if calculated using a time-integrated measure of the labile (bioavailable) fraction instead of a specific spot sample of bulk water. Herein, we assess recently developed configurations of the diffusive gradients in thin films (DGT) sampling technique to provide a more accurate predictor for the bioaccumulation of uranium, plutonium, and americium within the biota of the Sellafield-impacted Esk Estuary (UK). We complement DGT data with the cross-flow ultrafiltration of bulk seawater to assess the DGT-labile fraction versus the bulk concentration. Sequential elution of Fucus vesiculosis reveals preferential internalization and strong intracellular binding of less particle-reactive uranium. We find significant variations between CF values in biota calculated using a spot sample versus using DGT, which suggest an underestimation of the CF by spot sampling in some cases. We therefore recommend a revision of CF values using time-integrated bioavailability proxies.

4.
Water Res ; 221: 118838, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35841796

ABSTRACT

Nuclear discharges to the oceans have given rise to significant accumulations of radionuclides in sediments which can later remobilise back into the water column. A continuing supply of radionuclides to aquatic organisms and the human food chain can therefore exist, despite the absence of ongoing nuclear discharges. Radionuclide remobilisation from sediment is consequently a critical component of the modelled radiation dose to the public. However, radionuclide remobilisation fluxes from contaminated marine sediments have never been quantitatively determined in-situ to provide a valid assessment of the issue. Here, we combine recent advances in the Diffusive Gradients in Thin Films (DGT) sampling technique with ultrasensitive measurement by accelerator mass spectrometry (AMS) to calculate the remobilisation fluxes of plutonium, americium and uranium isotopes from the Esk Estuary sediments (UK), which have accumulated historic discharges from the Sellafield nuclear reprocessing facility. Isotopic evidence indicates the local biota are accumulating remobilised plutonium and demonstrates the DGT technique as a valid bioavailability proxy, which more accurately reflects the elemental fractionation of the actinides in the biota than traditional bulk water sampling. These results provide a fundamental evaluation of the re-incorporation of bioavailable actinides into the biosphere from sediment reservoirs. We therefore anticipate this work will provide a tool and point of reference to improve radiation dose modelling and contribute insight for other environmental projects, such as the near-surface and deep disposal of nuclear waste.


Subject(s)
Actinoid Series Elements , Plutonium , Actinoid Series Elements/analysis , Environmental Monitoring/methods , Geologic Sediments/chemistry , Humans , Plutonium/analysis , Radioisotopes/analysis , Water/analysis
5.
ACS Omega ; 7(23): 20053-20058, 2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35722008

ABSTRACT

Spent nuclear fuel must be carefully managed to prevent pollution of the environment with radionuclides. Within the framework of correct radioactive waste management, spent fuel rods are stored in cooling pools to allow short-lived fission products to decay. If fuel rods leak, they liberate radionuclides into the cooling water; therefore, it is essential to determine radionuclide concentrations in the pool water for monitoring purposes and to plan the decommissioning process. In this work, we present, to our knowledge, the first passive sampling technique for measures of actinides in spent nuclear fuel pools, based on recently developed diffusive gradients in thin-film (DGT) configurations. These samplers eliminate the need to retrieve and handle large samples of fuel pool water for radiochemical processing by immobilizing their targeted radionuclides in situ on the solid phase within the sampler. This is additionally the first application of the DGT technique for Cm measure. Herein, we make the calibrated effective diffusion coefficients of U, Pu, Am, and Cm in borated spent fuel pool water available. We tested these samplers in the fuel pool of a nuclear facility and measured samples using accelerator mass spectrometry to provide high-precision isotopic reports, allowing for the first independent implementation of a recently developed technique for dating nuclear fuel based on its Cm isotope signature.

6.
Sci Rep ; 12(1): 10314, 2022 06 20.
Article in English | MEDLINE | ID: mdl-35725999

ABSTRACT

210Po is a radioactive component of conventional cigarette tobacco smoke and is a recognized carcinogen. Despite the expanding market of heated tobacco products, no data are available on the activity of 210Po in the smoke of IQOS Heets cigarette. We determined the 210Po activity in the mainstream smoke of thirteen cigarette brands available on the Swiss market using a smoking machine and compared the results to the 210Po activity measured in the mainstream smoke of the IQOS system. In addition, we measured the 210Po and 210Pb loss on heating after uniform heating from 50 to 600 °C for several cigarette brands and the Heets cigarettes. 13.6 ± 4.1% of 210Po activity was found in the mainstream smoke in conventional cigarette smoking (7% for 210Pb). This dropped to 1.8 ± 0.3% in the mainstream smoke of IQOS Heets. Conversely, when the tobacco was heated uniformly at 330 °C, a loss of 210Po of more than 80% was observed for all type of cigarettes. Apparently, IQOS significantly reduced the 210Po and 210Pb activities in the mainstream smoke. However, our results show that only 15% of the Heets tobacco reaches 330 °C with IQOS. While IQOS reduces the 210Po and 210Pb activities in the mainstream smoke compared to conventional cigarettes, it only heats a marginal fraction of the tobacco present in the Heets cigarette. Because smoking is an addiction (mostly due to nicotine), IQOS could possibly deliver an unsatisfactory dose of nicotine to a Heets cigarette smoker, as most of the tobacco is left unaltered.


Subject(s)
Cigarette Smoking , Tobacco Products , Lead , Nicotine , Polonium , Nicotiana
7.
Anal Chim Acta ; 1194: 339421, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35063163

ABSTRACT

Actinium-225 is a highly radiotoxic alpha-emitting radionuclide, which is currently in the spotlight owing to its promising radiotherapeutic applications in nuclear medicine. Personnel involved in the production and handling of actinium-225 is exposed to a risk of accidental incorporation of this radionuclide. Radiological protection regulations require regular monitoring of incorporation and internal dosimetry assessment for workers manipulating open radioactive sources. Urine is often used as a biological sample for measuring the incorporation of actinides, however it requires a radiochemical separation with a certified metrological tracer to enable quantitative determination. There is no stable, nor sufficiently long-lived radioactive isotopes of actinium to provide a metrological yield tracer. In this article, we propose an application of an ion-imprinted polymer resin to extract actinium-225 from urine employing americium-243 as a radioactive tracer. The radiochemical separation was followed by a quantitative determination with alpha-spectrometry. Solid-phase extraction of both actinides from urine using ion-imprinted polymer resin resulted in good radiochemical yields: 57.7 ± 16.5% (n = 17) for actinium-225 and 62.8 ± 18.0% (n = 17) for americium-243. Equivalent recoveries showed that americium-243 is a suitable yield tracer for the determination of actinium-225 with an ion-imprinted polymer resin. Combined with a different measurement technique, this method can be applied for the separation of other isotopes of actinium, such as actinium-227.


Subject(s)
Actinium , Radioactive Tracers , Humans , Isotopes , Solid Phase Extraction , Spectrum Analysis
8.
Sci Total Environ ; 803: 149783, 2022 Jan 10.
Article in English | MEDLINE | ID: mdl-34482132

ABSTRACT

Understanding the hydro-biogeochemical conditions that impact the mobility of uranium (U) in natural or artificial wetlands is essential for the management of contaminated environments. Field-based research indicates that high organic matter content and saturation of the soil from the water table create favorable conditions for U accumulation. Despite the installation of artificial wetlands for U remediation, the processes that can release U from wetland soils to underlying aquifers are poorly understood. Here we used a large soil core from a montane wetland in a 6 year lysimeter experiment to study the stability of U accumulated to levels of up to 6000 ppm. Amendments with electron acceptors showed that the wetland soil can reduce sulfate and Fe(III) in large amounts without significant release of U into the soil pore water. However, amendment with carbonate (5 mM, pH 7.5) resulted in a large discharge of U. After a six-month period of imposed drought, the re-flooding of the core led to the release of negligible amounts of U into the pore water. This long-term experiment demonstrates that U is strongly bound to organic matter and that its stability is only challenged by carbonate complexation.


Subject(s)
Uranium , Carbonates , Electrons , Ferric Compounds , Soil , Uranium/analysis , Wetlands
9.
Anal Chem ; 93(35): 11937-11945, 2021 09 07.
Article in English | MEDLINE | ID: mdl-34432435

ABSTRACT

Plutonium, americium, and uranium contribute to the radioactive contamination of the environment and are risk factors for elevated radiation exposure via ingestion through food or water. Due to the significant environmental inventory of these radioelements, a sampling method to accurately monitor their bioavailable concentrations in natural waters is necessary, especially since physicochemical factors can cause significant temporal fluctuations in their waterborne concentrations. To this end, we engineered novel diffusive gradients in thin-film (DGT) configurations using resin gels, which are selective for UO22+, Pu(IV + V), and Am(III) among an excess of extraneous cations. In this work, we also report an improved synthesis of our in-house ion-imprinted polymer resin, which we used to manufacture a resin gel to capture Am(III). The effective diffusion coefficients of Pu, Am, and U in agarose cross-linked polyacrylamide were determined in freshwater and seawater simulants and in natural seawater, to calibrate these configurations for environmental deployments.


Subject(s)
Plutonium , Uranium , Americium/analysis , Diffusion , Fresh Water , Plutonium/analysis , Uranium/analysis
10.
Chemosphere ; 270: 129332, 2021 May.
Article in English | MEDLINE | ID: mdl-33422999

ABSTRACT

Nuclear reprocessing plants are sources of environmental contamination by gaseous or liquid discharges. Numerous radionuclides are of concern, with actinides and 90Sr being the most radiotoxic. Environmental radioactivity survey programs mostly use γ-spectrometry to track contaminations because γ-spectrometry is very cost effective and can be carried out on raw samples. On the other hand, the determination of ß- or α-emitting radionuclides in environmental samples requires rather sophisticated analytical methods, and are thus dedicated to specific goals. However, measuring radionuclides such as Pu, Am, and Sr often provides more information about the presence of a current or prior contamination and on its origin, based on the isotopic composition of the samples. We found that the analysis of 241Pu, 239+240Pu, 241Am, and 90Sr of a few selected soil samples taken near the nuclear reprocessing plant of La Hague, France, revealed the presence of a previous environmental contamination originating from several incidents in La Hague site involving atmospheric transfer and leaks in flooded waste pits. The 241Am-241Pu dating method indicated a contamination period prior to 1983. The presence of elevated levels of light non-radioactive lanthanides and yttrium in the soil samples confirmed the involvement of cold fuel. Our results demonstrate how long-lived actinides are likely to reveal a long-term contamination of the environment by spent fuel. Our study indicates that there is a requirement to use more sophisticated tools than γ-spectrometry when surveying the environments surrounding industrial plants for nuclear power and nuclear reprocessing with a potential for the accidental release of radioactivity into the environment.


Subject(s)
Plutonium , Radioactivity , Soil Pollutants, Radioactive , Water Pollutants, Radioactive , France , Plutonium/analysis , Soil , Soil Pollutants, Radioactive/analysis , Strontium Radioisotopes , Water Pollutants, Radioactive/analysis
11.
Chimia (Aarau) ; 74(12): 984-988, 2020 Dec 23.
Article in English | MEDLINE | ID: mdl-33357292

ABSTRACT

Natural radionuclides are ubiquitous in the environment. In addition, artificial radionuclides are present in the Swiss environment after the fallout of the nuclear bomb tests of the 1950s and 1960s, after the accident of the Chernobyl nuclear power plant, or after authorized discharges from the Swiss nuclear power plants and research centres. These radionuclides can create a radiological hazard to the environment and humans because of the increased risk of cancer due to the ionizing radiation they produce. Here we show that some of these radionuclides have made their way from the air or the soil to the human body, where they target mostly the skeleton. However, the activity levels of 90 Sr, 239 Pu and 240 Pu, 226 Ra and 210 Pb/ 210 Po found in the human body remain very low and do not represent a public health issue at the current body burden.


Subject(s)
Human Body , Soil , Cesium Radioisotopes/analysis , Humans , Retrospective Studies , Switzerland
12.
Sci Total Environ ; 727: 138368, 2020 Jul 20.
Article in English | MEDLINE | ID: mdl-32334206

ABSTRACT

Uranium (U) accumulation in organic soils is a common phenomenon that can lead to high U concentration in montane wetlands. The stability of the immobilized U in natural wetlands following redox fluctuations and re-oxidation events, however, is not currently known. In this study, we investigated a saturated histosol that had accumulated up to 6000 ppm of U at 30 cm below ground level (bgl). Uranium in the waters feeding the wetland originates from the weathering of surrounding gneiss rocks, a process releasing trace amounts (<3 ppb) of soluble U into nearby streams. Redox oscillations in the first 20 cm bgl led to the accumulation of U, Ca, S in low permeability layers at 30 and 45 cm bgl. XRF measurements along the core showed that U strongly correlates with sulfur (S) and calcium (Ca), but not iron (Fe). We tested the stability of uranium in the histosol over a nine-month laboratory amendment of a large core of the histosol (∅ 30 cm; length 55 cm) with up to 500 ppm nitrate. Nitrate addition was followed by complete nitrate reduction and re-generation of oxidizing Eh conditions in the top 25 cm of the soil without U release to the soil pore waters above background levels (1-2 ppb). Our results demonstrate that, fast reduction of nitrate, sulfate, and Fe(III) occur in the soil without U release. The remarkable stability of sorbed U in the histosol may result from buffering by sulfide and Sn° and/or strong U(IV)-OM or U(VI)-OM enhanced by organic S moieties or bridging complexation by Ca. That U in the soil was immobile under nitrate addition for up to 9 months can inform remediation strategies based on the use of artificial wetlands to limit U mobility in contaminated sites.

13.
Proc Natl Acad Sci U S A ; 116(22): 10943-10951, 2019 05 28.
Article in English | MEDLINE | ID: mdl-31097580

ABSTRACT

Here, we highlight the potential translational benefits of delivering FLASH radiotherapy using ultra-high dose rates (>100 Gy⋅s-1). Compared with conventional dose-rate (CONV; 0.07-0.1 Gy⋅s-1) modalities, we showed that FLASH did not cause radiation-induced deficits in learning and memory in mice. Moreover, 6 months after exposure, CONV caused permanent alterations in neurocognitive end points, whereas FLASH did not induce behaviors characteristic of anxiety and depression and did not impair extinction memory. Mechanistic investigations showed that increasing the oxygen tension in the brain through carbogen breathing reversed the neuroprotective effects of FLASH, while radiochemical studies confirmed that FLASH produced lower levels of the toxic reactive oxygen species hydrogen peroxide. In addition, FLASH did not induce neuroinflammation, a process described as oxidative stress-dependent, and was also associated with a marked preservation of neuronal morphology and dendritic spine density. The remarkable normal tissue sparing afforded by FLASH may someday provide heretofore unrealized opportunities for dose escalation to the tumor bed, capabilities that promise to hasten the translation of this groundbreaking irradiation modality into clinical practice.


Subject(s)
Cognitive Dysfunction , Neuroprotection/radiation effects , Radiation Dosage , Radiotherapy/methods , Reactive Oxygen Species/metabolism , Animals , Brain/pathology , Brain/radiation effects , Cognitive Dysfunction/etiology , Cognitive Dysfunction/prevention & control , Female , Inflammation , Mice , Mice, Inbred C57BL , Radiotherapy/adverse effects , Reactive Oxygen Species/analysis
14.
Anal Chim Acta ; 1047: 267-274, 2019 Jan 24.
Article in English | MEDLINE | ID: mdl-30567659

ABSTRACT

89Sr and 90Sr are both fission products of high radiotoxicity, which can be released in significant amounts in the event of a nuclear accident. Radiostrontium isotopes will follow calcium all along the food chain and, after ingestion, accumulate in the bones. Therefore, it is imperative to be able to determine 89Sr and 90Sr in raw milk samples in case of an accidental situation to evaluate the dose given by both radionuclides to the population. Several methods exist for conducting 89Sr and 90Sr determination. However, most of them use at least one chromatographic step to purify strontium. This, unfortunately, increases the analytical time before the results can be released to the authorities. In addition, they often use liquid scintillation counting to determine the 89Sr and 90Sr activities, a method which can handle only one sample at a time. Here we propose using synthetic tunnel manganese oxides such as cryptomelane and todorokite and layered metal sulfides to selectively extract strontium from fresh milk and raw urine in a batch sorption method. We found that the method is very quick and yields very pure sources of (radio)-strontium, which can be counted in a proportional counter. Data (counts per minute) from the counter were fitted to a mathematical expression enabling the simultaneous determination of 89Sr and 90Sr. Because a proportional counter often has several drawers, it is typically possible to measure up to 16 samples at a time. Since cryptomelane is a binding phase easily synthesized in a large quantity, we anticipate that this technique could be an interesting alternative to conventional solid phase extraction chromatography methods.


Subject(s)
Food Contamination/analysis , Manganese Compounds/chemistry , Milk/chemistry , Oxides/chemistry , Strontium Radioisotopes/urine , Sulfides/chemistry , Animals , Humans , Manganese Compounds/chemical synthesis , Oxides/chemical synthesis , Sulfides/chemical synthesis
15.
Anal Chim Acta ; 1031: 178-184, 2018 Nov 15.
Article in English | MEDLINE | ID: mdl-30119737

ABSTRACT

226Ra is a natural radioelement emitting α and γ radiations. It can be highly concentrated in TENORM materials from the petroleum or fertilizer industries. In Switzerland, 226Ra is currently a radioactive inheritance problem from the watch industry. Furthermore, 223Ra is a radium isotope used in nuclear medicine to treat bone metastasis. There exist several methods to measure radium using alpha or gamma spectrometry or using 222Rn emanation technique. The limitations of these methods are due to the required detection limits and the nature of the samples. When using alpha spectrometry to reach very low detection limits, critical technical hitches often arise because of the difficulties in separating radium from barium, in removing organics eluted from the separating chromatography column, and in plating radium. Moreover, overall chemical recovery of radium is often not reproducible, depending on the studies. Here we propose a method that separates radium from other alkaline-earth cations using cation exchange chromatography and selective complex formation by EDTA and DCTA. Radium is completely free of the 229Th tracer and its daughter products, particularly 225Ac. Organics from the column are removed in a further purification step so that radium can be plated with acceptable yields in a HCl/HNO3/ethanol solution. We successfully applied the method to soil, water, urine and human bone samples and further extended it to the determination of 223Ra in a bone biopsy, using 226Ra as an internal tracer.


Subject(s)
Alpha Particles , Bone and Bones/chemistry , Radium/analysis , Scintillation Counting , Bone and Bones/metabolism , Bone and Bones/pathology , Gamma Rays , Humans , Radium/blood , Radium/urine , Soil/chemistry , Thorium/analysis , Thorium/blood , Thorium/urine , Water Pollutants, Radioactive/analysis
16.
Environ Sci Technol ; 50(10): 5103-10, 2016 05 17.
Article in English | MEDLINE | ID: mdl-27064997

ABSTRACT

The interaction of trace metals with naturally occurring organic matter (NOM) is a key process of the speciation of trace elements in aquatic environments. The rate of dissociation of metal-NOM complexes will impact the amount of free metal available for biouptake. Assessing the bioavailability of plutonium (Pu) helps to predict its toxic effects on aquatic biota. However, the rate of dissociation of Pu-NOM complexes in natural freshwaters is currently unknown. Here, we used the technique of diffusive gradients in thin films (DGT) with several diffusive layer thicknesses to provide new insights into the dissociation kinetics of Pu-NOM complexes. Results show that Pu complexes with NOM (mainly fulvic acid) are somewhat labile (0.2 ≤ ξ ≤ 0.4), with kd = 7.5 × 10(-3) s(-1). DGT measurements of environmental Pu in organic-rich natural water confirm these findings. In addition, we determined the effective diffusion coefficients of Pu(V) in polyacrylamide (PAM) gel in the presence of humic acid using a diffusion cell (D = 1.70 ± 0.25 × 10(-6) cm(2) s(-1)). These results show that Pu(V) is a more mobile species than Pu(IV).


Subject(s)
Fresh Water , Plutonium , Diffusion , Humic Substances , Kinetics
17.
Forensic Sci Int ; 259: 1-9, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26707208

ABSTRACT

The late president of the Palestinian Authority, Yasser Arafat, died in November 2004 in Percy Hospital, one month after having experienced a sudden onset of symptoms that included severe nausea, vomiting, diarrhoea and abdominal pain and which were followed by multiple organ failure. In spite of numerous investigations performed in France, the pathophysiological mechanisms at the origin of the symptoms could not be identified. In 2011, we found abnormal levels of polonium-210 ((210)Po) in some of Arafat's belongings that were worn during his final hospital stay and which were stained with biological fluids. This finding led to the exhumation of Arafat's remains in 2012. Significantly higher (up to 20 times) activities of (210)Po and lead-210 ((210)Pb) were found in the ribs, iliac crest and sternum specimens compared to reference samples from the literature (p-value <1%). In all specimens from the tomb, (210)Po activity was supported by a similar activity of (210)Pb. Biokinetic calculations demonstrated that a (210)Pb impurity, as identified in a commercial source of 3MBq of (210)Po, may be responsible for the activities measured in Arafat's belongings and remains 8 years after his death. The absence of myelosuppression and hair loss in Mr Arafat's case compared to Mr Litvinenko's, the only known case of malicious poisoning with (210)Po, could be explained by differences in the time delivery-scheme of intake. In conclusion, statistical Bayesian analysis combining all the evidence gathered in our forensic expert report moderately supports the proposition that Mr Arafat was poisoned by (210)Po.


Subject(s)
Famous Persons , Forensic Toxicology/methods , Polonium/poisoning , Bayes Theorem , Cause of Death , France , Humans , Lead Radioisotopes/analysis , Lead Radioisotopes/poisoning , Radioisotopes
18.
J Vis Exp ; (105): e53188, 2015 Nov 09.
Article in English | MEDLINE | ID: mdl-26574673

ABSTRACT

The biological uptake of plutonium (Pu) in aquatic ecosystems is of particular concern since it is an alpha-particle emitter with long half-life which can potentially contribute to the exposure of biota and humans. The diffusive gradients in thin films technique is introduced here for in-situ measurements of Pu bioavailability and speciation. A diffusion cell constructed for laboratory experiments with Pu and the newly developed protocol make it possible to simulate the environmental behavior of Pu in model solutions of various chemical compositions. Adjustment of the oxidation states to Pu(IV) and Pu(V) described in this protocol is essential in order to investigate the complex redox chemistry of plutonium in the environment. The calibration of this technique and the results obtained in the laboratory experiments enable to develop a specific DGT device for in-situ Pu measurements in freshwaters. Accelerator-based mass-spectrometry measurements of Pu accumulated by DGTs in a karst spring allowed determining the bioavailability of Pu in a mineral freshwater environment. Application of this protocol for Pu measurements using DGT devices has a large potential to improve our understanding of the speciation and the biological transfer of Pu in aquatic ecosystems.


Subject(s)
Aquatic Organisms/metabolism , Plutonium/chemistry , Plutonium/pharmacokinetics , Biological Availability , Calibration , Diffusion , Ecosystem , Models, Chemical , Oxidation-Reduction , Solutions
19.
Environ Sci Technol ; 48(18): 10829-34, 2014 Sep 16.
Article in English | MEDLINE | ID: mdl-25141175

ABSTRACT

The toxicity of heavy metals in natural waters is strongly dependent on the local chemical environment. Assessing the bioavailability of radionuclides predicts the toxic effects to aquatic biota. The technique of diffusive gradients in thin films (DGT) is largely exploited for bioavailability measurements of trace metals in waters. However, it has not been applied for plutonium speciation measurements yet. This study investigates the use of DGT technique for plutonium bioavailability measurements in chemically different environments. We used a diffusion cell to determine the diffusion coefficients (D) of plutonium in polyacrylamide (PAM) gel and found D in the range of 2.06-2.29 × 10(-6) cm(2) s(-1). It ranged between 1.10 and 2.03 × 10(-6) cm(2) s(-1) in the presence of fulvic acid and in natural waters with low DOM. In the presence of 20 ppm of humic acid of an organic-rich soil, plutonium diffusion was hindered by a factor of 5, with a diffusion coefficient of 0.50 × 10(-6) cm(2) s(-1). We also tested commercially available DGT devices with Chelex resin for plutonium bioavailability measurements in laboratory conditions and the diffusion coefficients agreed with those from the diffusion cell experiments. These findings show that the DGT methodology can be used to investigate the bioaccumulation of the labile plutonium fraction in aquatic biota.


Subject(s)
Environmental Monitoring/methods , Plutonium/analysis , Acrylic Resins/chemistry , Biological Availability , Diffusion
20.
Forensic Sci Int ; 234: 190.e1-6, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24287304

ABSTRACT

In legal medicine, the post mortem interval (PMI) of interest covers the last 50 years. When only human skeletal remains are found, determining the PMI currently relies mostly on the experience of the forensic anthropologist, with few techniques available to help. Recently, several radiometric methods have been proposed to reveal PMI. For instance, (14)C and (90)Sr bomb pulse dating covers the last 60 years and give reliable PMI when teeth or bones are available. (232)Th series dating has also been proposed but requires a large amount of bones. In addition, (210)Pb dating is promising but is submitted to diagenesis and individual habits like smoking that must be handled carefully. Here we determine PMI on 29 cases of forensic interest using (90)Sr bomb pulse. In 12 cases, (210)Pb dating was added to narrow the PMI interval. In addition, anthropological investigations were carried out on 15 cases to confront anthropological expertise to the radiometric method. Results show that 10 of the 29 cases can be discarded as having no forensic interest (PMI>50 years) based only on the (90)Sr bomb pulse dating. For 10 other cases, the additional (210)Pb dating restricts the PMI uncertainty to a few years. In 15 cases, anthropological investigations corroborate the radiometric PMI. This study also shows that diagenesis and inter-individual difference in radionuclide uptake represent the main sources of uncertainty in the PMI determination using radiometric methods.


Subject(s)
Bone and Bones/chemistry , Forensic Anthropology/methods , Lead Radioisotopes/analysis , Radiometric Dating/methods , Strontium Radioisotopes/analysis , Adolescent , Adult , Aged , Aged, 80 and over , Humans , Middle Aged , Switzerland , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...