Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Autism Res ; 3(6): 350-8, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21182212

ABSTRACT

BACKGROUND: Biological measurements that distinguish individuals with autism from typically developing individuals and those with other developmental and neuropsychiatric disorders must demonstrate very high performance to have clinical value as potential imaging biomarkers. We hypothesized that further study of white matter microstructure (WMM) in the superior temporal gyrus (STG) and temporal stem (TS), two brain regions in the temporal lobe containing circuitry central to language, emotion, and social cognition, would identify a useful combination of classification features and further understand autism neuropathology. METHODS: WMM measurements from the STG and TS were examined from 30 high-functioning males satisfying full criteria for idiopathic autism aged 7-28 years and 30 matched controls and a replication sample of 12 males with idiopathic autism and 7 matched controls who participated in a previous case-control diffusion tensor imaging (DTI) study. Language functioning, adaptive functioning, and psychotropic medication usage were also examined. RESULTS: In the STG, we find reversed hemispheric asymmetry of two separable measures of directional diffusion coherence, tensor skewness, and fractional anisotropy. In autism, tensor skewness is greater on the right and fractional anisotropy is decreased on the left. We also find increased diffusion parallel to white matter fibers bilaterally. In the right not left TS, we find increased omnidirectional, parallel, and perpendicular diffusion. These six multivariate measurements possess very high ability to discriminate individuals with autism from individuals without autism with 94% sensitivity, 90% specificity, and 92% accuracy in our original and replication samples. We also report a near-significant association between the classifier and a quantitative trait index of autism and significant correlations between two classifier components and measures of language, IQ, and adaptive functioning in autism.


Subject(s)
Autistic Disorder/pathology , Diffusion Tensor Imaging/methods , Nerve Fibers, Myelinated/pathology , Temporal Lobe/pathology , Adolescent , Adult , Anisotropy , Brain Mapping/methods , Child , Functional Laterality , Humans , Image Processing, Computer-Assisted/methods , Language , Male , Reproducibility of Results , Sensitivity and Specificity , Young Adult
2.
Am J Pathol ; 177(2): 575-85, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20566748

ABSTRACT

Postmortem, genetic, brain imaging, and peripheral cell studies all support decreased mitochondrial activity as a factor in the manifestation of Bipolar Disorder (BD). Because abnormal mitochondrial morphology is often linked to altered energy metabolism, we investigated whether changes in mitochondrial structure were present in brain and peripheral cells of patients with BD. Mitochondria from patients with BD exhibited size and distributional abnormalities compared with psychiatrically-healthy age-matched controls. Specifically, in brain, individual mitochondria profiles had significantly smaller areas, on average, in BD samples (P = 0.03). In peripheral cells, mitochondria in BD samples were concentrated proportionately more within the perinuclear region than in distal processes (P = 0.0008). These mitochondrial changes did not appear to be correlated with exposure to lithium. Also, these abnormalities in brain and peripheral cells were independent of substantial changes in the actin or tubulin cytoskeleton with which mitochondria interact. The observed changes in mitochondrial size and distribution may be linked to energy deficits and, therefore, may have consequences for cell plasticity, resilience, and survival in patients with BD, especially in brain, which has a high-energy requirement. The findings may have implications for diagnosis, if they are specific to BD, and for treatment, if they provide clues as to the underlying pathophysiology of BD.


Subject(s)
Bipolar Disorder/pathology , Mitochondria/pathology , Prefrontal Cortex , Adenosine Triphosphate/metabolism , Adult , Aged , Aged, 80 and over , Antidepressive Agents/pharmacology , Cell Line , Cytochromes c/metabolism , Cytoskeleton/ultrastructure , Energy Metabolism , Female , Fibroblasts/drug effects , Fibroblasts/ultrastructure , Humans , Lithium Carbonate/pharmacology , Male , Middle Aged , Mitochondria/ultrastructure , Prefrontal Cortex/cytology , Prefrontal Cortex/metabolism , Young Adult
3.
Dev Neuropsychol ; 35(3): 296-317, 2010.
Article in English | MEDLINE | ID: mdl-20446134

ABSTRACT

In the course of efforts to establish quantitative norms for healthy brain development by magnetic resonance imaging (MRI) (Brain Development Cooperative Group, 2006), previously unreported associations of parental education and temporal and frontal lobe volumes with full scale IQ and its verbal and performance subscales were discovered. Our findings were derived from the largest, most representative MRI sample to date of healthy children and adolescents, ages 4 years 10 months to 18 years 4 months. We first find that parental education has a strong association with IQ in children that is not mediated by total or regional brain volumes. Second, we find that our observed correlations between temporal gray matter, temporal white matter and frontal white matter volumes with full scale IQ, between 0.14 to 0.27 in children and adolescents, are due in large part to their correlations with performance IQ and not verbal IQ. The volumes of other lobar gray and white matter, subcortical gray matter (thalamus, caudate nucleus, putamen, and globus pallidus), cerebellum, and brainstem do not contribute significantly to IQ variation. Third, we find that head circumference is an insufficient index of cerebral volume in typically developing older children and adolescents. The relations between total and regional brain volumes and IQ can best be discerned when additional variables known to be associated with IQ, especially parental education and other demographic measures, are considered concurrently.


Subject(s)
Association , Brain/anatomy & histology , Brain/growth & development , Intelligence , Adolescent , Body Weights and Measures/methods , Brain Mapping , Child , Child, Preschool , Educational Status , Female , Functional Laterality , Head/anatomy & histology , Humans , Image Processing, Computer-Assisted , Linear Models , Magnetic Resonance Imaging , Male , Neuropsychological Tests
4.
NMR Biomed ; 23(3): 242-50, 2010 Apr.
Article in English | MEDLINE | ID: mdl-19908224

ABSTRACT

Evidence suggests that mitochondria undergo functional and morphological changes with age. This study aimed to investigate the relationship of brain energy metabolism to healthy aging by assessing tissue specific differences in metabolites observable by phosphorus ((31)P) MRS. (31)P MRSI at 4 Tesla (T) was performed on 34 volunteers, aged 21-84, screened to exclude serious medical and psychiatric diagnoses. Linear mixed effects models were used to analyze the effects of age on phosphorus metabolite concentrations, intracellular magnesium and pH estimates in brain tissue. A significant age associated decrease in brain pH (-0.53% per decade), increase in PCr (1.1% per decade) and decrease in PME (1.7% per decade) were found in total tissue, with PCr effects localized to the gray matter. An increase in beta NTP as a function of age (1% per decade) approached significance (p = 0.052). There were no effects demonstrated with increasing age for intracellular magnesium, PDE or inorganic phosphate. This study reports the effects of healthy aging on brain chemistry in the gray matter versus white matter using (31)P MRS measures of high energy phosphates, pH and membrane metabolism. Increased PCr, increased beta NTP (reflecting ATP) and reduced pH may reflect altered energy production with healthy aging. Unlike some previous studies of aging and brain chemistry, this study examined healthy, non-demented and psychiatrically stable older adults and specifically analyzed gray-white matter differences in brain metabolism.


Subject(s)
Aging/metabolism , Brain/metabolism , Energy Metabolism , Phospholipids/metabolism , Adult , Aged , Aged, 80 and over , Female , Humans , Hydrogen-Ion Concentration , Linear Models , Magnetic Resonance Spectroscopy , Male , Middle Aged , Phosphorus Isotopes , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...