Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 10: 1689, 2019.
Article in English | MEDLINE | ID: mdl-31447829

ABSTRACT

The goals of our study were to compare the immune response to different killed and modified live vaccines against PRRS virus and to monitor the antibody production and the cell mediated immunity both at the systemic and local level. In the experiment, we immunized four groups of piglets with two commercial inactivated (A1-Progressis, A2-Suivac) and two modified live vaccines (B3-Amervac, B4-Porcilis). Twenty-one days after the final vaccination, all piglets, including the control non-immunized group (C5), were i.n., infected with the Lelystad strain of PRRS virus. The serum antibody response (IgM and IgG) was the strongest in group A1 followed by two MLV (B3 and B4) groups. Locally, we demonstrated the highest level of IgG antibodies in bronchoalveolar lavages (BALF), and saliva in group A1, whereas low IgA antibody responses in BALF and feces were detected in all groups. We have found virus neutralization antibody at DPV 21 (days post vaccination) and higher levels in all groups including the control at DPI 21 (days post infection). Positive antigen specific cell-mediated response in lymphocyte transformation test (LTT) was observed in groups B3 and B4 at DPV 7 and in group B4 at DPV 21 and in all intervals after infection. The IFN-γ producing lymphocytes after antigen stimulation were found in CD4-CD8+ and CD4+CD8+ subsets of all immunized groups 7 days after infection. After infection, there were obvious differences in virus excretion. The virus was detected in all groups of piglets in serum, saliva, and occasionally in feces at DPI 3. Significantly lower virus load was found in groups A1 and B3 at DPI 21. Negative samples appeared at DPI 21 in B3 group in saliva. It can be concluded that antibodies after immunization and infection, and the virus after infection can be detected in all the compartments monitored. Immunization with inactivated vaccine A1-Progressis induces high levels of antibodies produced both systemically and locally. Immunization with MLV-vaccines (Amervac and Porcilis) produces sufficient antibody levels and also cell-mediated immunity. After infection virus secretion gradually decreases in group B3, indicating tendency to induce sterile immunity.


Subject(s)
Antibodies, Viral/biosynthesis , Lymphocyte Activation , Porcine respiratory and reproductive syndrome virus/immunology , Vaccination , Viral Vaccines/immunology , Animals , Swine , Vaccines, Inactivated/immunology , Vaccines, Live, Unattenuated/immunology , Viral Load
2.
PLoS One ; 10(10): e0141537, 2015.
Article in English | MEDLINE | ID: mdl-26509266

ABSTRACT

Although rabies incidence has fallen sharply over the past decades in Europe, the disease is still present in Eastern Europe. Oral rabies immunization of wild animal rabies has been shown to be the most effective method for the control and elimination of rabies. All rabies vaccines used in Europe are modified live virus vaccines based on the Street Alabama Dufferin (SAD) strain isolated from a naturally-infected dog in 1935. Because of the potential safety risk of a live virus which could revert to virulence, the genetic composition of three commercial attenuated live rabies vaccines was investigated in two independent laboratories using next genome sequencing. This study is the first one reporting on the diversity of variants in oral rabies vaccines as well as the presence of a mix of at least two different variants in all tested batches. The results demonstrate the need for vaccine producers to use new robust methodologies in the context of their routine vaccine quality controls prior to market release.


Subject(s)
Animal Diseases/prevention & control , Animals, Wild , Rabies Vaccines/immunology , Rabies virus/immunology , Rabies/veterinary , Vaccines, Attenuated , Animals , Europe , Genetic Variation , Genome, Viral , High-Throughput Nucleotide Sequencing , RNA, Viral , Rabies Vaccines/genetics , Rabies virus/genetics , Vaccination/veterinary
SELECTION OF CITATIONS
SEARCH DETAIL
...