Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(5)2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36902961

ABSTRACT

Heterogeneous superconductivity onset is a common phenomenon in high-Tc superconductors of both the cuprate and iron-based families. It is manifested by a fairly wide transition from the metallic to zero-resistance states. Usually, in these strongly anisotropic materials, superconductivity (SC) first appears as isolated domains. This leads to anisotropic excess conductivity above Tc, and the transport measurements provide valuable information about the SC domain structure deep within the sample. In bulk samples, this anisotropic SC onset gives an approximate average shape of SC grains, while in thin samples, it also indicates the average size of SC grains. In this work, both interlayer and intralayer resistivity were measured as a function of temperature in FeSe samples of various thicknesses. To measure the interlayer resistivity, FeSe mesa structures oriented across the layers were fabricated using FIB. As the sample thickness decreases, a significant increase in superconducting transition temperature Tc is observed: Tc raises from 8 K in bulk material to 12 K in microbridges of thickness ∼40 nm. We applied analytical and numerical calculations to analyze these and earlier data and find the aspect ratio and size of the SC domains in FeSe consistent with our resistivity and diamagnetic response measurements. We propose a simple and fairly accurate method for estimating the aspect ratio of SC domains from Tc anisotropy in samples of various small thicknesses. The relationship between nematic and superconducting domains in FeSe is discussed. We also generalize the analytical formulas for conductivity in heterogeneous anisotropic superconductors to the case of elongated SC domains of two perpendicular orientations with equal volume fractions, corresponding to the nematic domain structure in various Fe-based superconductors.

2.
Nanotechnology ; 32(49)2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34438379

ABSTRACT

Nanotweezers based on the shape memory effect have been developed and tested. In combination with a commercial nanomanipulator, they allow 3D nanoscale operation controlled in a scanning electron microscope. Here we apply the tweezers for the fabrication of nanostructures based on whiskers of NbS3, a quasi one-dimensional compound with room-temperature charge density wave (CDW). The nanowhiskers were separated without damage from the growth batch, an entangled array, and safely transferred to a substrate with a preliminary deposited Au film. The contacts were fabricated with Pt sputtering on top of the whisker and the film. The high degree of synchronization of the sliding CDW under a RF field with a frequency up to 600 MHz confirms the high quality of the contacts and of the sample structure after the manipulations. The proposed technique paves the way to novel type micro- and nanostructures fabrication and their various applications.

4.
PLoS One ; 10(4): e0122601, 2015.
Article in English | MEDLINE | ID: mdl-25856389

ABSTRACT

Epigenetic mechanisms of gene regulation in context of cardiovascular diseases are of considerable interest. So far, our current knowledge of the DNA methylation profiles for atherosclerosis affected and healthy human vascular tissues is still limited. Using the Illumina Infinium Human Methylation27 BeadChip, we performed a genome-wide analysis of DNA methylation in right coronary artery in the area of advanced atherosclerotic plaques, atherosclerotic-resistant internal mammary arteries, and great saphenous veins obtained from same patients with coronary heart disease. The resulting DNA methylation patterns were markedly different between all the vascular tissues. The genes hypomethylated in athero-prone arteries to compare with atherosclerotic-resistant arteries were predominately involved in regulation of inflammation and immune processes, as well as development. The great saphenous veins exhibited an increase of the DNA methylation age in comparison to the internal mammary arteries. Gene ontology analysis for genes harboring hypermethylated CpG-sites in veins revealed the enrichment for biological processes associated with the development. Four CpG-sites located within the MIR10B gene sequence and about 1 kb upstream of the HOXD4 gene were also confirmed as hypomethylated in the independent dataset of the right coronary arteries in the area of advanced atherosclerotic plaques in comparison with the other vascular tissues. The DNA methylation differences observed in vascular tissues of patients with coronary heart disease can provide new insights into the mechanisms underlying the development of pathology and explanation for the difference in graft patency after coronary artery bypass grafting surgery.


Subject(s)
Atherosclerosis/genetics , Coronary Disease/genetics , Coronary Vessels/metabolism , Epigenesis, Genetic , Mammary Arteries/metabolism , Plaque, Atherosclerotic/genetics , Saphenous Vein/metabolism , Aged , Atherosclerosis/metabolism , Atherosclerosis/pathology , Coronary Disease/metabolism , Coronary Disease/pathology , Coronary Vessels/pathology , CpG Islands , DNA Methylation , Female , Genome-Wide Association Study , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Male , Mammary Arteries/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , Middle Aged , Molecular Sequence Annotation , Organ Specificity , Plaque, Atherosclerotic/metabolism , Plaque, Atherosclerotic/pathology , Saphenous Vein/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...