Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
J Comput Chem ; 45(22): 1945-1962, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38700389

ABSTRACT

A recent work (arXiv:2401.04685) has merged N-centered ensembles of neutral and charged electronic ground states with ensembles of neutral ground and excited states, thus providing a general and in-principle exact (so-called extended N-centered) ensemble density functional theory of neutral and charged electronic excitations. This formalism made it possible to revisit the concept of density-functional derivative discontinuity, in the particular case of single excitations from the highest occupied Kohn-Sham (KS) molecular orbital, without invoking the usual "asymptotic behavior of the density" argument. In this work, we address a broader class of excitations, with a particular focus on double excitations. An exact implementation of the theory is presented for the two-electron Hubbard dimer model. A thorough comparison of the true physical ground- and excited-state electronic structures with that of the fictitious ensemble density-functional KS system is also presented. Depending on the choice of the density-functional ensemble as well as the asymmetry of the dimer and the correlation strength, an inversion of states can be observed. In some other cases, the strong mixture of KS states within the true physical system makes the assignment "single excitation" or "double excitation" irrelevant.

2.
J Chem Phys ; 159(3)2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37466226

ABSTRACT

The equivalence in one-electron quantum baths between the practical implementation of density matrix embedding theory (DMET) and the more recent Householder-transformed density matrix functional embedding theory has been shown previously in the standard but special case where the reference full-size (one-electron reduced) density matrix, from which the bath is constructed, is idempotent [S. Yalouz et al., J. Chem. Phys. 157, 214112 (2022)]. We prove mathematically that the equivalence remains valid when the density matrix is not idempotent anymore, thus allowing for the construction of correlated (one-electron) quantum baths. A density-matrix functional exactification of DMET is derived within the present unified quantum embedding formalism. Numerical examples reveal that the embedding cluster can be quite sensitive to the level of density-matrix functional approximation used for computing the reference density matrix.

3.
J Chem Phys ; 157(21): 214112, 2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36511541

ABSTRACT

Recently, some of the authors introduced the use of the Householder transformation as a simple and intuitive method for embedding local molecular fragments [see Sekaran et al., Phys. Rev. B 104, 035121 (2021) and Sekaran et al., Computation 10, 45 (2022)]. In this work, we present an extension of this approach to the more general case of multi-orbital fragments using the block version of the Householder transformation applied to the one-body reduced density matrix, unlocking the applicability to general quantum chemistry/condensed matter physics Hamiltonians. A step-by-step construction of the block Householder transformation is presented. Both physical and numerical areas of interest of the approach are highlighted. The specific mean-field (noninteracting) case is thoroughly detailed as it is shown that the embedding of a given N spin-orbital fragment leads to the generation of two separated sub-systems: (1) a 2N spin-orbitals "fragment+bath" cluster that exactly contains N electrons and (2) a remaining cluster's "environment" described by so-called core electrons. We illustrate the use of this transformation in different cases of embedding scheme for practical applications. We particularly focus on the extension of the previously introduced Local Potential Functional Embedding Theory and Householder-transformed Density Matrix Functional Embedding Theory to the case of multi-orbital fragments. These calculations are realized on different types of systems, such as model Hamiltonians (Hubbard rings) and ab initio molecular systems (hydrogen rings).

4.
Phys Chem Chem Phys ; 24(47): 28700-28781, 2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36269074

ABSTRACT

In this paper, the history, present status, and future of density-functional theory (DFT) is informally reviewed and discussed by 70 workers in the field, including molecular scientists, materials scientists, method developers and practitioners. The format of the paper is that of a roundtable discussion, in which the participants express and exchange views on DFT in the form of 302 individual contributions, formulated as responses to a preset list of 26 questions. Supported by a bibliography of 777 entries, the paper represents a broad snapshot of DFT, anno 2022.


Subject(s)
Materials Science , Humans
5.
Top Curr Chem (Cham) ; 380(1): 4, 2021 Nov 26.
Article in English | MEDLINE | ID: mdl-34825294

ABSTRACT

Recent progress in the field of (time-independent) ensemble density-functional theory (DFT) for excited states are reviewed. Both Gross-Oliveira-Kohn (GOK) and N-centered ensemble formalisms, which are mathematically very similar and allow for an in-principle-exact description of neutral and charged electronic excitations, respectively, are discussed. Key exact results, for example, the equivalence between the infamous derivative discontinuity problem and the description of weight dependencies in the ensemble exchange-correlation density functional, are highlighted. The variational evaluation of orbital-dependent ensemble Hartree-exchange (Hx) energies is discussed in detail. We show in passing that state-averaging individual exact Hx energies can lead to severe (although solvable) v-representability issues. Finally, we explore the possibility of using the concept of density-driven correlation, which has been introduced recently and does not exist in regular ground-state DFT, for improving state-of-the-art correlation density-functional approximations for ensembles. The present review reflects the efforts of a growing community to turn ensemble DFT into a rigorous and reliable low-cost computational method for excited states. We hope that, in the near future, this contribution will stimulate new formal and practical developments in the field.

9.
Faraday Discuss ; 224(0): 402-423, 2020 Dec 04.
Article in English | MEDLINE | ID: mdl-32910116

ABSTRACT

Gross-Oliveira-Kohn (GOK) ensemble density-functional theory (GOK-DFT) is a time-independent extension of density-functional theory (DFT) which allows the computation of excited-state energies via the derivatives of the ensemble energy with respect to the ensemble weights. Contrary to the time-dependent version of DFT (TD-DFT), double excitations can be easily computed within GOK-DFT. However, to take full advantage of this formalism, one must have access to a weight-dependent exchange-correlation functional in order to model the infamous ensemble derivative contribution to the excitation energies. In the present article, we discuss the construction of first-rung (i.e., local) weight-dependent exchange-correlation density-functional approximations for two-electron atomic and molecular systems (He and H2) specifically designed for the computation of double excitations within GOK-DFT. In the spirit of optimally-tuned range-separated hybrid functionals, a two-step system-dependent procedure is proposed to obtain accurate energies associated with double excitations.

10.
Phys Rev Lett ; 124(24): 243001, 2020 Jun 19.
Article in English | MEDLINE | ID: mdl-32639839

ABSTRACT

Gould and Pittalis [Phys. Rev. Lett. 123, 016401 (2019)PRLTAO0031-900710.1103/PhysRevLett.123.016401 recently revealed a density-driven (DD) correlation energy that is specific to many-electron ensembles and must be accounted for by approximations. We derive in this Letter a general and simpler expression in terms of the ensemble weights, the ensemble Kohn-Sham (KS) orbitals, and their linear response to variations in the ensemble weights. As no additional state-driven KS systems are needed, its evaluation is greatly simplified. We confirm the importance of DD effects and introduce a direct and promising route to approximations.

11.
J Chem Phys ; 152(21): 214101, 2020 Jun 07.
Article in English | MEDLINE | ID: mdl-32505144

ABSTRACT

We report a local, weight-dependent correlation density-functional approximation that incorporates information about both ground and excited states in the context of density functional theory for ensembles (eDFT). This density-functional approximation for ensembles is specially designed for the computation of single and double excitations within Gross-Oliveira-Kohn DFT (i.e., eDFT for neutral excitations) and can be seen as a natural extension of the ubiquitous local-density approximation in the context of ensembles. The resulting density-functional approximation, based on both finite and infinite uniform electron gas models, automatically incorporates the infamous derivative discontinuity contributions to the excitation energies through its explicit ensemble weight dependence. Its accuracy is illustrated by computing single and double excitations in one-dimensional (1D) many-electron systems in the weak, intermediate, and strong correlation regimes. Although the present weight-dependent functional has been specifically designed for 1D systems, the methodology proposed here is general, i.e., directly applicable to the construction of weight-dependent functionals for realistic three-dimensional systems, such as molecules and solids.

12.
J Chem Phys ; 150(9): 094106, 2019 Mar 07.
Article in English | MEDLINE | ID: mdl-30849903

ABSTRACT

Gross-Oliveira-Kohn density-functional theory (GOK-DFT) for ensembles is the DFT analog of state-averaged wavefunction-based (SA-WF) methods. In GOK-DFT, the SA (so-called ensemble) exchange-correlation (xc) energy is described by a single functional of the density which, for a fixed density, depends on the weights assigned to each state in the ensemble. We show that if a many-weight-dependent xc functional is employed, then it becomes possible to extract, in principle exactly, all individual energy levels from a single GOK-DFT calculation, exactly like in a SA-WF calculation. More precisely, starting from the Kohn-Sham energies, a global Levy-Zahariev-type shift as well as a state-specific (ensemble-based) xc derivative correction must be applied in order to reach the energy level of interest. We illustrate with the asymmetric Hubbard dimer the importance and substantial weight dependence of both corrections. A comparison with more standard extraction procedures, which rely on a sequence of ensemble calculations, is made at the ensemble exact exchange level of approximation.

13.
J Chem Phys ; 147(20): 204105, 2017 Nov 28.
Article in English | MEDLINE | ID: mdl-29195286

ABSTRACT

The extrapolation technique of Savin [J. Chem. Phys. 140, 18A509 (2014)], which was initially applied to range-separated ground-state-density-functional Hamiltonians, is adapted in this work to ghost-interaction-corrected (GIC) range-separated ensemble density-functional theory (eDFT) for excited states. While standard extrapolations rely on energies that decay as µ-2 in the large range-separation-parameter µ limit, we show analytically that (approximate) range-separated GIC ensemble energies converge more rapidly (as µ-3) towards their pure wavefunction theory values (µ → +∞ limit), thus requiring a different extrapolation correction. The purpose of such a correction is to further improve on the convergence and, consequently, to obtain more accurate excitation energies for a finite (and, in practice, relatively small) µ value. As a proof of concept, we apply the extrapolation method to He and small molecular systems (viz., H2, HeH+, and LiH), thus considering different types of excitations such as Rydberg, charge transfer, and double excitations. Potential energy profiles of the first three and four singlet Σ+ excitation energies in HeH+ and H2, respectively, are studied with a particular focus on avoided crossings for the latter. Finally, the extraction of individual state energies from the ensemble energy is discussed in the context of range-separated eDFT, as a perspective.

14.
J Chem Phys ; 146(6): 064112, 2017 Feb 14.
Article in English | MEDLINE | ID: mdl-28201891

ABSTRACT

The present paper reports the application of a computational framework, based on the quantum master equation, the Fermi's golden Rule, and conventional wavefunction-based methods, to describe electron transport through a spin crossover molecular junction (Fe(bapbpy) (NCS)2, 1, bapbpy = N-(6-(6-(Pyridin-2-ylamino)pyridin-2-yl)pyridin-2-yl)-pyridin-2-amine). This scheme is an alternative to the standard approaches based on the relative position and nature of the frontier orbitals, as it evaluates the junction's Green's function by means of accurate state energies and wavefunctions. In the present work, those elements are calculated for the relevant states of the high- and low-spin species of 1, and they are used to evaluate the output conductance within a given range of bias- and gate-voltages. The contribution of the ground and low-lying excited states to the current is analyzed, and inspected in terms of their 2S + 1 Ms-states. In doing so, it is shown the relevance of treating not only the ground state in its maximum-Ms projection, as usually done in most computational-chemistry packages, but the whole spectrum of low-energy states of the molecule. Such improved representation of the junction has a notable impact on the total conductivity and, more importantly, it restores the equivalence between alpha and beta transport, which means that no spin polarization is observed in the absence of Zeeman splitting. Finally, this work inspects the strong- and weak-points of the suggested theoretical framework to understand electron transport through molecular switchable materials, identifies a pathway for future improvement, and offers a new insight into concepts that play a key role in spintronics.

15.
J Chem Phys ; 139(18): 184308, 2013 Nov 14.
Article in English | MEDLINE | ID: mdl-24320275

ABSTRACT

Charge transfer excitations can be described within Time-Dependent Density Functional Theory (TD-DFT), not only by means of the Coulomb Attenuated Method (CAM) but also with a combination of wave function theory and TD-DFT based on range separation. The latter approach enables a rigorous formulation of multi-determinantal TD-DFT schemes where excitation classes, which are absent in conventional TD-DFT spectra (like for example double excitations), can be addressed. This paper investigates the combination of both the long-range Multi-Configuration Self-Consistent Field (MCSCF) and Second Order Polarization Propagator Approximation (SOPPA) ansätze with a short-range DFT (srDFT) description. We find that the combinations of SOPPA or MCSCF with TD-DFT yield better results than could be expected from the pure wave function schemes. For the Time-Dependent MCSCF short-range DFT ansatz (TD-MC-srDFT) excitation energies calculated over a larger benchmark set of molecules with predominantly single reference character yield good agreement with their reference values, and are in general comparable to the CAM-B3LYP functional. The SOPPA-srDFT scheme is tested for a subset of molecules used for benchmarking TD-MC-srDFT and performs slightly better against the reference data for this small subset. Beyond the proof-of-principle calculations comprising the first part of this contribution, we additionally studied the low-lying singlet excited states (S1 and S2) of the retinal chromophore. The chromophore displays multireference character in the ground state and both excited states exhibit considerable double excitation character, which in turn cannot be described within standard TD-DFT, due to the adiabatic approximation. However, a TD-MC-srDFT approach can account for the multireference character, and excitation energies are obtained with accuracy comparable to CASPT2, although using a much smaller active space.


Subject(s)
Quantum Theory , Molecular Structure , Proteins/chemistry , Solvents/chemistry , Time Factors
16.
J Chem Phys ; 139(13): 134113, 2013 Oct 07.
Article in English | MEDLINE | ID: mdl-24116558

ABSTRACT

The alternative separation of exchange and correlation energies proposed by Toulouse et al. [Theor. Chem. Acc. 114, 305 (2005)] is explored in the context of multi-configuration range-separated density-functional theory. The new decomposition of the short-range exchange-correlation energy relies on the auxiliary long-range interacting wavefunction rather than the Kohn-Sham (KS) determinant. The advantage, relative to the traditional KS decomposition, is that the wavefunction part of the energy is now computed with the regular (fully interacting) Hamiltonian. One potential drawback is that, because of double counting, the wavefunction used to compute the energy cannot be obtained by minimizing the energy expression with respect to the wavefunction parameters. The problem is overcome by using short-range optimized effective potentials (OEPs). The resulting combination of OEP techniques with wavefunction theory has been investigated in this work, at the Hartree-Fock (HF) and multi-configuration self-consistent-field (MCSCF) levels. In the HF case, an analytical expression for the energy gradient has been derived and implemented. Calculations have been performed within the short-range local density approximation on H2, N2, Li2, and H2O. Significant improvements in binding energies are obtained with the new decomposition of the short-range energy. The importance of optimizing the short-range OEP at the MCSCF level when static correlation becomes significant has also been demonstrated for H2, using a finite-difference gradient. The implementation of the analytical gradient for MCSCF wavefunctions is currently in progress.

17.
J Chem Phys ; 138(8): 084101, 2013 Feb 28.
Article in English | MEDLINE | ID: mdl-23464134

ABSTRACT

Multi-configuration range-separated density-functional theory is extended to the time-dependent regime. An exact variational formulation is derived. The approximation, which consists in combining a long-range Multi-Configuration-Self-Consistent Field (MCSCF) treatment with an adiabatic short-range density-functional (DFT) description, is then considered. The resulting time-dependent multi-configuration short-range DFT (TD-MC-srDFT) model is applied to the calculation of singlet excitation energies in H2, Be, and ferrocene, considering both short-range local density (srLDA) and generalized gradient (srGGA) approximations. As expected, when modeling long-range interactions with the MCSCF model instead of the adiabatic Buijse-Baerends density-matrix functional as recently proposed by Pernal [J. Chem. Phys. 136, 184105 (2012)], the description of both the 1(1)D doubly-excited state in Be and the 1(1)Σu(+) state in the stretched H2 molecule are improved, although the latter is still significantly underestimated. Exploratory TD-MC-srDFT/GGA calculations for ferrocene yield in general excitation energies at least as good as TD-DFT using the Coulomb attenuated method based on the three-parameter Becke-Lee-Yang-Parr functional (TD-DFT/CAM-B3LYP), and superior to wave-function (TD-MCSCF, symmetry adapted cluster-configuration interaction) and TD-DFT results based on LDA, GGA, and hybrid functionals.

18.
J Chem Phys ; 135(3): 034116, 2011 Jul 21.
Article in English | MEDLINE | ID: mdl-21786996

ABSTRACT

Range-separated density-functional theory combines wave function theory for the long-range part of the two-electron interaction with density-functional theory for the short-range part. When describing the long-range interaction with non-variational methods, such as perturbation or coupled-cluster theories, self-consistency effects are introduced in the density functional part, which for an exact solution requires iterations. They are generally assumed to be small but no detailed study has been performed so far. Here, the authors analyze self-consistency when using Møller-Plesset-type (MP) perturbation theory for the long range interaction. The lowest-order self-consistency corrections to the wave function and the energy, that enter the perturbation expansions at the second and fourth order, respectively, are both expressed in terms of the one-electron reduced density matrix. The computational implementation of the latter is based on a Neumann series which, interestingly, even though the effect is small, usually diverges. A convergence technique, which perhaps can be applied in other uses of Neumann series in perturbation theory, is proposed. The numerical results thus obtained show that, in weakly bound systems, self-consistency can be neglected since the long-range correlation does not affect the density significantly. Although MP is not adequate for multireference systems, it can still be used as a reliable analysis tool. Though the density change is not negligible anymore in such cases, self-consistency effects are found to be much smaller than long-range correlation effects (less than 10% for the systems considered). For that reason, a sensible approximation might be to update the short-range energy functional term while freezing its functional derivative, namely, the short-range local potential, in the wave function optimization. The accuracy of such an approximation still needs to be assessed.

19.
J Chem Phys ; 135(24): 244106, 2011 Dec 28.
Article in English | MEDLINE | ID: mdl-22225143

ABSTRACT

A two-parameter extension of the density-scaled double hybrid approach of Sharkas et al. [J. Chem. Phys. 134, 064113 (2011)] is presented. It is based on the explicit treatment of a fraction of multideterminantal exact exchange. The connection with conventional double hybrids is made when neglecting density scaling in the correlation functional as well as second-order corrections to the density. In this context, the fraction a(c) of second-order Møller-Plesset (MP2) correlation energy is not necessarily equal to the square of the fraction a(x) of Hartree-Fock exchange. More specifically, it is shown that a(c)≤a(x)(2), a condition that conventional semi-empirical double hybrids actually fulfill. In addition, a new procedure for calculating the orbitals, which has a better justification than the one routinely used, is proposed. Referred to as λ(1) variant, the corresponding double hybrid approximation has been tested on a small set consisting of H(2), N(2), Be(2), Mg(2), and Ar(2). Three conventional double hybrids (B2-PLYP, B2GP-PLYP, and PBE0-DH) have been considered. Potential curves obtained with λ(1)- and regular double hybrids can, in some cases, differ significantly. In particular, for the weakly bound dimers, the λ(1) variants bind systematically more than the regular ones, which is an improvement in many but not all cases. Including density scaling in the correlation functionals may of course change the results significantly. Moreover, optimized effective potentials based on a partially-interacting system could also be used to generate proper orbitals. Work is currently in progress in those directions.

20.
J Chem Phys ; 131(5): 054107, 2009 Aug 07.
Article in English | MEDLINE | ID: mdl-19673551

ABSTRACT

In a previous paper [Fromager et al., J. Chem. Phys. 126, 074111 (2007)], some of the authors proposed a recipe for choosing the optimal value of the mu parameter that controls the long-range/short-range separation of the two-electron interaction in hybrid multiconfigurational self-consistent field short-range density-functional theory (MC-srDFT) methods. For general modeling with MC-srDFT methods, it is clearly desirable that the same universal value of mu can be used for any molecule. Their calculations on neutral light element compounds all yielded mu(opt)=0.4 a.u. In this work the authors investigate the universality of this value by considering "extreme" study cases, namely, neutral and charged isoelectronic f(0) actinide compounds (ThO(2), PaO(2)(+), UO(2)(2+), UN(2), CUO, and NpO(2)(3+)). We find for these compounds that mu(opt)=0.3 a.u. but show that 0.4 a.u. is still acceptable. This is a promising result in the investigation of a universal range separation. The accuracy of the currently best MC-srDFT (mu=0.3 a.u.) approach has also been tested for equilibrium geometries. Though it performs as well as wave function theory and DFT for static-correlation-free systems, it fails in describing the neptunyl (VII) ion NpO(2)(3+) where static correlation is significant; bending is preferred at the MC-srDFT (mu=0.3 a.u.) level, whereas the molecule is known to be linear. This clearly shows the need for better short-range functionals, especially for the description of the short-range exchange. It also suggests that the bending tendencies observed in DFT for NpO(2)(3+) cannot be fully explained by the bad description of static correlation effects by standard functionals. A better description of the exchange seems to be essential too.

SELECTION OF CITATIONS
SEARCH DETAIL
...