Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
PLoS One ; 19(2): e0289859, 2024.
Article in English | MEDLINE | ID: mdl-38359061

ABSTRACT

Earthworms can stimulate microbial activity and hence greenhouse gas (GHG) emissions from soils. However, the extent of this effect in the presence of plants and soil moisture fluctuations, which are influenced by earthworm burrowing activity, remains uncertain. Here, we report the effects of earthworms (without, anecic, endogeic, both) and plants (with, without) on GHG (CO2, N2O) emissions in a 3-month greenhouse mesocosm experiment simulating a simplified agricultural context. The mesocosms allowed for water drainage at the bottom to account for the earthworm engineering effect on water flow during two drying-wetting cycles. N2O cumulative emissions were 34.6% and 44.8% lower when both earthworm species and only endogeic species were present, respectively, and 19.8% lower in the presence of plants. The presence of the endogeic species alone or in combination with the anecic species slightly reduced CO2 emissions by 5.9% and 11.4%, respectively, and the presence of plants increased emissions by 6%. Earthworms, plants and soil water content interactively affected weekly N2O emissions, an effect controlled by increased soil dryness due to drainage via earthworm burrows and mesocosm evapotranspiration. Soil macroporosity (measured by X-ray tomography) was affected by earthworm species-specific burrowing activity. Both GHG emissions decreased with topsoil macropore volume, presumably due to reduced moisture and microbial activity. N2O emissions decreased with macropore volume in the deepest layer, likely due to the presence of fewer anaerobic microsites. Our results indicate that, under experimental conditions allowing for plant and earthworm engineering effects on soil moisture, earthworms do not increase GHG emissions, and endogeic earthworms may even reduce N2O emissions.


Subject(s)
Greenhouse Gases , Oligochaeta , Animals , Soil , Greenhouse Gases/analysis , Carbon Dioxide/analysis , Water , Nitrous Oxide/analysis , Methane/analysis
2.
Commun Biol ; 3(1): 377, 2020 07 14.
Article in English | MEDLINE | ID: mdl-32665673

ABSTRACT

Predicted increases in drought frequency and severity may change soil microbial functioning. Microbial resistance and recovery to drought depend on plant community characteristics, among other factors, yet how changes in plant diversity modify microbial drought responses is uncertain. Here, we assessed how repeated drying-rewetting cycles affect soil microbial functioning and whether tree species diversity modifies these effects with a microcosm experiment using soils from different European forests. Our results show that microbial aerobic respiration and denitrification decline under drought but are similar in single and mixed tree species forests. However, microbial communities from mixed forests resist drought better than those from mono-specific forests. This positive tree species mixture effect is robust across forests differing in environmental conditions and species composition. Our data show that mixed forests mitigate drought effects on soil microbial processes, suggesting greater stability of biogeochemical cycling in mixed forests should drought frequency increase in the future.


Subject(s)
Biodiversity , Droughts , Soil Microbiology , Trees/microbiology , Carbon/metabolism , Carbon Dioxide/metabolism , Ecosystem , Forests , Nitrogen/metabolism , Nitrous Oxide/metabolism , Trees/physiology
3.
Sci Rep ; 7(1): 12498, 2017 10 02.
Article in English | MEDLINE | ID: mdl-28970559

ABSTRACT

Heterotrophic microorganisms are commonly thought to be stoichiometrically homeostatic but their stoichiometric plasticity has rarely been examined, particularly in terrestrial ecosystems. Using a fertilization experiment in a tropical rainforest, we evaluated how variable substrate stoichiometry may influence the stoichiometry of microbial communities in the leaf litter layer and in the underlying soil. C:N:P ratios of the microbial biomass were higher in the organic litter layer than in the underlying mineral soil. Regardless of higher ratios for litter microbial communities, C, N, and P fertilization effects on microbial stoichiometry were strong in both litter and soil, without any fundamental difference in plasticity between these two communities. Overall, N:P ratios were more constrained than C:nutrient ratios for both litter and soil microbial communities, suggesting that stoichiometric plasticity arises because of a decoupling between C and nutrients. Contrary to the simplifying premise of strict homeostasis in microbial decomposers, we conclude that both litter and soil communities can adapt their C:N:P stoichiometry in response to the stoichiometric imbalance of available resources.


Subject(s)
Carbon/analysis , Nitrogen/analysis , Phosphorus/analysis , Rainforest , Soil/chemistry , Biomass , Ecosystem , Fertilizers/analysis , French Guiana , Microbial Consortia/physiology , Plant Leaves/chemistry , Soil Microbiology
4.
ISME J ; 11(7): 1559-1568, 2017 07.
Article in English | MEDLINE | ID: mdl-28375214

ABSTRACT

Size is one of the most important biological traits influencing organismal ecology and evolution. However, we know little about the drivers of body size evolution in unicellulars. A long-term evolution experiment (Lenski's LTEE) in which Escherichia coli adapts to a simple glucose medium has shown that not only the growth rate and the fitness of the bacterium increase over time but also its cell size. This increase in size contradicts prominent 'external diffusion' theory (EDC) predicting that cell size should have evolved toward smaller cells. Among several scenarios, we propose and test an alternative 'internal diffusion-constraint' (IDC) hypothesis for cell size evolution. A change in cell volume affects metabolite concentrations in the cytoplasm. The IDC states that a higher metabolism can be achieved by a reduction in the molecular traffic time inside of the cell, by increasing its volume. To test this hypothesis, we studied a population from the LTEE. We show that bigger cells with greater growth and CO2 production rates and lower mass-to-volume ratio were selected over time in the LTEE. These results are consistent with the IDC hypothesis. This novel hypothesis offers a promising approach for understanding the evolutionary constraints on cell size.


Subject(s)
Bacteria/cytology , Bacteria/genetics , Biological Evolution , Cell Size
5.
Proc Natl Acad Sci U S A ; 113(22): 6224-9, 2016 May 31.
Article in English | MEDLINE | ID: mdl-27185934

ABSTRACT

Extreme climatic events (ECEs) such as droughts and heat waves are predicted to increase in intensity and frequency and impact the terrestrial carbon balance. However, we lack direct experimental evidence of how the net carbon uptake of ecosystems is affected by ECEs under future elevated atmospheric CO2 concentrations (eCO2). Taking advantage of an advanced controlled environment facility for ecosystem research (Ecotron), we simulated eCO2 and extreme cooccurring heat and drought events as projected for the 2050s and analyzed their effects on the ecosystem-level carbon and water fluxes in a C3 grassland. Our results indicate that eCO2 not only slows down the decline of ecosystem carbon uptake during the ECE but also enhances its recovery after the ECE, as mediated by increases of root growth and plant nitrogen uptake induced by the ECE. These findings indicate that, in the predicted near future climate, eCO2 could mitigate the effects of extreme droughts and heat waves on ecosystem net carbon uptake.


Subject(s)
Carbon Cycle/drug effects , Carbon Dioxide/pharmacology , Carbon/metabolism , Droughts , Hot Temperature , Plant Leaves/growth & development , Soil/chemistry , Climate Change , Grassland , Plant Leaves/drug effects
6.
Ecology ; 97(4): 1023-37, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27220218

ABSTRACT

In addition to the effect of litter quality (LQ) on decomposition, increasing evidence is demonstrating that carbon mineralization can be influenced by the past resource history, mainly through following two processes: (1) decomposer communities from recalcitrant litter environments may have a wider functional ability to decompose a wide range of litter species than those originating from richer environments, i.e., the functional breadth (FB) hypothesis; and/or (2) decomposer communities may be specialized towards the litter they most frequently encounter, i.e., the home-field advantage (HFA) hypothesis. Nevertheless, the functional dissimilarities among contrasting microbial communities, which are generated by the FB and the HFA, have rarely been simultaneously quantified in the same experiment, and their relative contributions over time have never been assessed. To test these hypotheses, we conducted a reciprocal transplant decomposition experiment under controlled conditions using litter and soil originating from four ecosystems along a land-use gradient (forest, plantation, grassland, and cropland) and one additional treatment using 13C-labelled flax litter allowing us to assess the priming effect (PE) in each ecosystem. We found substantial effects of LQ on carbon mineralization (more than two-thirds of the explained variance), whereas the contribution of the soil type was fairly low (less than one-tenth), suggesting that the contrasting soil microbial communities play only a minor role in regulating decomposition rates. Although the results on PE showed that we overestimated litter-derived CO2 fluxes, litter-microbe interactions contributed significantly to the unexplained variance observed in carbon mineralization models. The magnitudes of FB and HFA were relatively similar, but the directions of these mechanisms were sometimes opposite depending on the litter and soil types. FB and HFA estimates calculated on parietal sugar mass loss were positively correlated with those calculated on enzymatic activity, confirming the idea that the interaction between litter quality and microbial community structure may modify the trajectory of carbon mineralization via enzymatic synthesis. We conclude that although litter quality was the predominant factor controlling litter mineralization, the local microbial communities and interactions with their substrates can explain a small (< 5%) but noticeable portion of carbon fluxes.


Subject(s)
Biodegradation, Environmental , Plants/classification , Soil Microbiology , Bacteria/classification , Carbon/chemistry , Carbon/metabolism , Ecosystem
7.
Front Microbiol ; 6: 1507, 2015.
Article in English | MEDLINE | ID: mdl-26779162

ABSTRACT

Nitrogen (N) and phosphorus (P) availability both control microbial decomposers and litter decomposition. However, these two key nutrients show distinct release patterns from decomposing litter and are unlikely available at the same time in most ecosystems. Little is known about how temporal differences in N and P availability affect decomposers and litter decomposition, which may be particularly critical for tropical rainforests growing on old and nutrient-impoverished soils. Here we used three chemically contrasted leaf litter substrates and cellulose paper as a widely accessible substrate containing no nutrients to test the effects of temporal differences in N and P availability in a microcosm experiment under fully controlled conditions. We measured substrate mass loss, microbial activity (by substrate induced respiration, SIR) as well as microbial community structure (using phospholipid fatty acids, PLFAs) in the litter and the underlying soil throughout the initial stages of decomposition. We generally found a stronger stimulation of substrate mass loss and microbial respiration, especially for cellulose, with simultaneous NP addition compared to a temporally separated N and P addition. However, litter types with a relatively high N to P availability responded more to initial P than N addition and vice versa. A third litter species showed no response to fertilization regardless of the sequence of addition, likely due to strong C limitation. Microbial community structure in the litter was strongly influenced by the fertilization sequence. In particular, the fungi to bacteria ratio increased following N addition alone, a shift that was reversed with complementary P addition. Opposite to the litter layer microorganisms, the soil microbial community structure was more strongly influenced by the identity of the decomposing substrate than by fertilization treatments, reinforcing the idea that C availability can strongly constrain decomposer communities. Collectively, our data support the idea that temporal differences in N and P availability are critical for the activity and the structure of microbial decomposer communities. The interplay of N, P, and substrate-specific C availability will strongly determine how nutrient pulses in the environment will affect microbial heterotrophs and the processes they drive.

8.
Proc Biol Sci ; 281(1796): 20141682, 2014 12 07.
Article in English | MEDLINE | ID: mdl-25320173

ABSTRACT

Plant leaf litter generally decomposes faster as a group of different species than when individual species decompose alone, but underlying mechanisms of these diversity effects remain poorly understood. Because resource C : N : P stoichiometry (i.e. the ratios of these key elements) exhibits strong control on consumers, we supposed that stoichiometric dissimilarity of litter mixtures (i.e. the divergence in C : N : P ratios among species) improves resource complementarity to decomposers leading to faster mixture decomposition. We tested this hypothesis with: (i) a wide range of leaf litter mixtures of neotropical tree species varying in C : N : P dissimilarity, and (ii) a nutrient addition experiment (C, N and P) to create stoichiometric similarity. Litter mixtures decomposed in the field using two different types of litterbags allowing or preventing access to soil fauna. Litter mixture mass loss was higher than expected from species decomposing singly, especially in presence of soil fauna. With fauna, synergistic litter mixture effects increased with increasing stoichiometric dissimilarity of litter mixtures and this positive relationship disappeared with fertilizer addition. Our results indicate that litter stoichiometric dissimilarity drives mixture effects via the nutritional requirements of soil fauna. Incorporating ecological stoichiometry in biodiversity research allows refinement of the underlying mechanisms of how changing biodiversity affects ecosystem functioning.


Subject(s)
Carbon/metabolism , Nitrogen/metabolism , Phosphorus/metabolism , Rainforest , Biodiversity , Ecosystem , Plant Leaves/metabolism , Soil
9.
Ecol Lett ; 16(6): 764-72, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23521784

ABSTRACT

Stoichiometric homeostasis of heterotrophs is a common, but not always well-examined premise in ecological stoichiometry. We experimentally evaluated the relationship between substrate (plant litter) and consumer (microorganisms) stoichiometry for a tropical terrestrial decomposer system. Variation in microbial C : P and N : P ratios tracked that of the soluble litter fraction, but not that of bulk leaf litter material. Microbial N and P were not isometrically related, suggesting higher rates of P than N sequestration in microbial biomass. Shifts in microbial stoichiometry were related to changes in microbial community structure. Our results indicate that P in dissolved form is a major driver of terrestrial microbial stoichiometry, similar to aquatic environments. The demonstrated relative plasticity in microbial C : P and N : P and the critical role of P have important implications for theoretical modelling and contribute to a process-based understanding of stoichiometric relationships and the flow of elements across trophic levels in decomposer systems.


Subject(s)
Microbial Consortia/physiology , Plant Leaves/microbiology , Biomass , Carbon/metabolism , Ecosystem , Meliaceae/microbiology , Nitrogen/metabolism , Phosphorus/metabolism , Tropical Climate
10.
PLoS One ; 7(12): e49990, 2012.
Article in English | MEDLINE | ID: mdl-23272052

ABSTRACT

Human-caused alterations of the carbon and nutrient cycles are expected to impact tropical ecosystems in the near future. Here we evaluated how a combined change in carbon (C), nitrogen (N) and phosphorus (P) availability affects soil and litter microbial respiration and litter decomposition in an undisturbed Amazonian rainforest in French Guiana. In a fully factorial C (as cellulose), N (as urea), and P (as phosphate) fertilization experiment we analyzed a total of 540 litterbag-soil pairs after a 158-day exposure in the field. Rates of substrate-induced respiration (SIR) measured in litter and litter mass loss were similarly affected by fertilization showing the strongest stimulation when N and P were added simultaneously. The stimulating NP effect on litter SIR increased considerably with increasing initial dissolved organic carbon (DOC) concentrations in litter, suggesting that the combined availability of N, P, and a labile C source has a particularly strong effect on microbial activity. Cellulose fertilization, however, did not further stimulate the NP effect. In contrast to litter SIR and litter mass loss, soil SIR was reduced with N fertilization and showed only a positive effect in response to P fertilization that was further enhanced with additional C fertilization. Our data suggest that increased nutrient enrichment in the studied Amazonian rainforest can considerably change microbial activity and litter decomposition, and that these effects differ between the litter layer and the underlying soil. Any resulting change in relative C and nutrient fluxes between the litter layer and the soil can have important consequences for biogeochemical cycles in tropical forest ecosystems.


Subject(s)
Carbon/chemistry , Soil Microbiology , Cellulose/chemistry , Ecosystem , French Guiana , Linear Models , Nitrogen/chemistry , Phosphates/chemistry , Phosphorus/chemistry , Plants/metabolism , Soil , Solid Waste , Trees , Tropical Climate , Urea/chemistry
11.
C R Biol ; 334(5-6): 393-402, 2011 May.
Article in English | MEDLINE | ID: mdl-21640948

ABSTRACT

The relationship between biodiversity and biogeochemical processes gained much interest in light of the rapidly decreasing biodiversity worldwide. In this article, we discuss the current status, challenges and prospects of functional concepts to plant litter diversity and microbial decomposer diversity. We also evaluate whether these concepts permit a better understanding of how biodiversity is linked to litter decomposition as a key ecosystem process influencing carbon and nutrient cycles. Based on a literature survey, we show that plant litter and microbial diversity matters for decomposition, but that considering numbers of taxonomic units appears overall as little relevant and less useful than functional diversity. However, despite easily available functional litter traits and the well-established theoretical framework for functional litter diversity, the impact of functional litter diversity on decomposition is not yet well enough explored. Defining functional diversity of microorganisms remains one of the biggest challenges for functional approaches to microbial diversity. Recent developments in microarray and metagenomics technology offer promising possibilities in the assessment of the functional structure of microbial communities. This might allow significant progress in measuring functional microbial diversity and ultimately in our ability to predict consequences of biodiversity loss in the decomposer system for biogeochemical processes.


Subject(s)
Biodegradation, Environmental , Biodiversity , Soil Microbiology , Bacterial Physiological Phenomena , Biomass , Climate , Ecosystem , Fungi/physiology , Plants
12.
Oecologia ; 167(1): 241-52, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21442279

ABSTRACT

Plant litter diversity effects on decomposition rates are frequently reported, but with a strong bias towards temperate ecosystems. Altered decomposition and nutrient recycling with changing litter diversity may be particularly important in tree species-rich tropical rainforests on nutrient-poor soils. Using 28 different mixtures of leaf litter from 16 Amazonian rainforest tree species, we tested the hypothesis that litter mixture effects on decomposition increase with increasing functional litter diversity. Litter mixtures and all single litter species were exposed in the field for 9 months using custom-made microcosms with soil fauna access. In order to test the hypothesis that the long-term presence of tree species contributing to the litter mixtures increases mixture effects on decomposition, microcosms were installed in a plantation at sites including the respective tree species composition and in a nearby natural forest where these tree species are absent. We found that mixture decomposition deviated from predictions based on single species, with predominantly synergistic effects. Functional litter diversity, defined as either richness, evenness, or divergence based on a wide range of chemical traits, did not explain the observed litter mixture effects. However, synergistic effects in litter mixtures increased with the long-term presence of tree species contributing to these mixtures as the home field advantage hypothesis assumes. Our data suggest that complementarity effects on mixed litter decomposition may emerge through long-term interactions between aboveground and belowground biota.


Subject(s)
Ecosystem , Soil/chemistry , Trees , Models, Chemical , Tropical Climate
13.
ISME J ; 4(3): 450-4, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20010634

ABSTRACT

Anaerobic oxidation of ammonium (anammox) is recognized as an important process in the marine nitrogen cycle yet nothing is known about the distribution, diversity and activity of anammox bacteria in the terrestrial realm. In this study, we report on the detection of anammox sequences of Candidatus 'Brocadia', 'Kuenenia', 'Scalindua' and 'Jettenia' in marshes, lakeshores, a contaminated porous aquifer, permafrost soil, agricultural soil and in samples associated with nitrophilic or nitrogen-fixing plants. This suggests a higher diversity of anammox bacteria in terrestrial than in marine ecosystems and could be a consequence of the larger variety of suitable niches in soils. Anammox bacteria were not ubiquitously present but were only detected in certain soil types and at particular depths, thus reflecting specific ecological requirements. As opposed to marine water column habitats where Candidatus 'Scalindua' dominates anammox guilds, 'Kuenenia' and 'Brocadia' appear to be the most common representatives in terrestrial environments.


Subject(s)
Bacteria/classification , Bacteria/genetics , Biodiversity , DNA, Bacterial/genetics , Ecosystem , Quaternary Ammonium Compounds/metabolism , Soil Microbiology , Anaerobiosis , Bacterial Proteins/genetics , DNA, Bacterial/chemistry , DNA, Bacterial/isolation & purification , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Metagenome , Oxidation-Reduction , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
14.
Plant Cell Environ ; 29(5): 919-27, 2006 May.
Article in English | MEDLINE | ID: mdl-17087475

ABSTRACT

White lupins (Lupinus albus L.) respond to phosphate deficiency by producing special root structures called cluster roots. These cluster roots secrete large amounts of carboxylates into the rhizosphere, mostly citrate and malate, which act as phosphate solubilizers and enable the plant to grow in soils with sparingly available phosphate. The success and efficiency of such a P-acquisition strategy strongly depends on the persistence and stability of the carboxylates in the soil, a parameter that is influenced to a large extent by biodegradation through rhizosphere bacteria and fungi. In this study, we show that white lupin roots use several mechanisms to reduce microbial growth. The abundance of bacteria associated with cluster roots was decreased at the mature state of the cluster roots, where a burst of organic acid excretion and a drastic pH decrease is observed. Excretion of phenolic compounds, mainly isoflavonoids, induced fungal sporulation, indicating that vegetative growth, and thus potential citrate consumption, is reduced. In addition, the activity of two antifungal cell wall-degrading enzymes, chitinase and glucanase, were highest at the stage preceding the citrate excretion. Therefore, our results suggest that white lupin has developed a complex strategy to reduce microbial degradation of the phosphate-solubilizing agents.


Subject(s)
Citrates/metabolism , Lupinus/metabolism , Phosphates/metabolism , Adsorption , Bacteria/growth & development , Bacteria/metabolism , Chromatography, High Pressure Liquid , Flavonoids/metabolism , Fusarium/metabolism , Fusarium/physiology , Hydrogen-Ion Concentration , Lupinus/microbiology , Plant Roots/metabolism , Plant Roots/microbiology , Spores, Fungal
15.
FEMS Microbiol Ecol ; 55(3): 339-50, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16466374

ABSTRACT

The response of total (DNA-based analysis) and active (RNA-based analysis) bacterial communities to a pCO2 increase under field conditions was assessed using two perennial grasses: the nitrophilic Lolium perenne and the oligonitrophilic Molinia coerulea. PCR- and reverse transcriptase-PCR denaturing gradient gel electrophoresis analysis of 16S rRNA genes generated contrasting profiles. The pCO2 increase influenced mainly the active and root-associated component of the bacterial community. Bacterial groups responsive to the pCO2 increase were identified by sequencing of corresponding denaturing gradient gel electrophoresis bands. About 50% of retrieved sequences were affiliated to Proteobacteria. Our data suggest that Actinobacteria in soil and Myxococcales (Deltaproteobacteria) in root are stimulated under elevated pCO2.


Subject(s)
Actinobacteria/growth & development , Carbon Dioxide/pharmacology , Ecosystem , Lolium/microbiology , Plant Roots/microbiology , Poaceae/microbiology , Proteobacteria/growth & development , Soil Microbiology , Actinobacteria/classification , Actinobacteria/genetics , Actinobacteria/metabolism , DNA, Bacterial/analysis , DNA, Ribosomal/analysis , Electrophoresis/methods , Genes, rRNA , Lolium/growth & development , Poaceae/growth & development , Proteobacteria/classification , Proteobacteria/genetics , Proteobacteria/metabolism , RNA, Ribosomal, 16S/genetics , Reverse Transcriptase Polymerase Chain Reaction
16.
FEMS Microbiol Ecol ; 45(2): 97-104, 2003 Jul 01.
Article in English | MEDLINE | ID: mdl-19719620

ABSTRACT

Abstract Studies on the diversity of environmental culturable Pseudomonas populations are dependent on the isolation procedure. This procedure includes the use of selective media which may influence the recovery of strains and thus the diversity described. In this study, we assessed the use of two agar isolation media for describing the diversity of soil- and root-inhabiting Pseudomonas associated with the perennial grass Molinia coerulea. A total of 382 Pseudomonas strains were recovered on either non-selective Angle's medium, or on Gould's modified S1 (mS1) Pseudomonas-selective medium. Their diversity was assessed by restriction analysis of PCR (polymerase chain reaction)-amplified 16S-23S rDNA internal transcript spacer sequences. The comparison of mS1- and Angle-recovered populations showed that the use of mS1 selective medium led to an underestimation of both Pseudomonas counts and diversity, especially in the soil environment.

17.
Microbiol Mol Biol Rev ; 66(4): 592-616, table of contents, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12456784

ABSTRACT

Research interest in microbial biodiversity over the past 25 years has increased markedly as microbiologists have become interested in the significance of biodiversity for ecological processes and as the industrial, medical, and agricultural applications of this diversity have evolved. One major challenge for studies of microbial habitats is how to account for the diversity of extremely large and heterogeneous populations with samples that represent only a very small fraction of these populations. This review presents an analysis of the way in which the field of microbial biodiversity has exploited sampling, experimental design, and the process of hypothesis testing to meet this challenge. This review is based on a systematic analysis of 753 publications randomly sampled from the primary scientific literature from 1975 to 1999 concerning the microbial biodiversity of eight habitats related to water, soil, plants, and food. These publications illustrate a dominant and growing interest in questions concerning the effect of specific environmental factors on microbial biodiversity, the spatial and temporal heterogeneity of this biodiversity, and quantitative measures of population structure for most of the habitats covered here. Nevertheless, our analysis reveals that descriptions of sampling strategies or other information concerning the representativeness of the sample are often missing from publications, that there is very limited use of statistical tests of hypotheses, and that only a very few publications report the results of multiple independent tests of hypotheses. Examples are cited of different approaches and constraints to experimental design and hypothesis testing in studies of microbial biodiversity. To prompt a more rigorous approach to unambiguous evaluation of the impact of microbial biodiversity on ecological processes, we present guidelines for reporting information about experimental design, sampling strategies, and analyses of results in publications concerning microbial biodiversity.


Subject(s)
Bacteria , Ecosystem , Research Design , Databases as Topic , Ecology , Publications
18.
Syst Appl Microbiol ; 25(2): 220-7, 2002 Aug.
Article in English | MEDLINE | ID: mdl-12353876

ABSTRACT

A PCR protocol was developed for the selective amplification of a segment of the ribosomal RNA operon in Pseudomonas strains. Two specific conserved sequences suitable for PCR priming were identified in the middle of the 16S rDNA and at the very beginning of the 23S rDNA respectively. As a result, amplified region includes the 3' half of the 16S rDNA with the whole 16S-23S rRNA Internal Transcripted Spacer (ITS1) sequence. The specificity of the primer set was checked on sequence databases and validated on collection strains and on one hundred soil bacterial isolates. Our results showed that both collection, soil-inhabiting Pseudomonas and some Pseudomonas-related Azotobacter DNAs could be amplified. This specific PCR for the detection of Pseudomonas strains was in good agreement with colony hybridisation using a Pseudomonas-specific probe. The targeted segment is relevant for a characterisation at the species (16S rDNA) as well as at the infraspecific (ITS1) levels. This PCR-based approach offers promising potential for the characterisation of environmental Pseudomonas populations.


Subject(s)
DNA, Bacterial/analysis , DNA, Ribosomal Spacer/analysis , Polymerase Chain Reaction/methods , Pseudomonas/isolation & purification , RNA, Ribosomal/analysis , 3' Flanking Region , Base Sequence , DNA Primers , Gammaproteobacteria/classification , Gammaproteobacteria/genetics , Genes, Bacterial , Models, Genetic , Pseudomonas/classification , Pseudomonas/genetics , RNA, Ribosomal, 16S/analysis , RNA, Ribosomal, 23S/analysis , Sequence Alignment , Sequence Analysis, DNA , Soil Microbiology , Species Specificity
19.
Environ Microbiol ; 4(8): 477-81, 2002 Aug.
Article in English | MEDLINE | ID: mdl-12153588

ABSTRACT

Rhizosphere associative dinitrogen fixation could be a valuable source of nitrogen in many nitrogen limited natural ecosystems, such as the rhizosphere of Molinia coerulea, a hemicryptophytic perennial grass naturally occurring in contrasted oligonitrophilic soils. The diversity of the dinitrogen-fixing bacteria associated with this environment was assessed by a cloning-sequencing approach on the nifH gene directly amplified from environmental DNA extracts. Seventy-seven randomly picked clones were analysed. One type of NifH sequence was dominant in both roots and surrounding soil, and represented 56% of all retrieved sequences. This cluster included previously described environmental clones and did not contain any NifH sequences similar to cultivated diazotrophs. The predominance of few NifH sequence types in the roots and the rhizosphere of Molinia coerulea indicate that the plant environment mediates a favourable niche for such dinitrogen-fixing bacteria.


Subject(s)
Genetic Variation , Oxidoreductases/genetics , Plant Roots/microbiology , Poaceae/microbiology , Rhizobiaceae/genetics , Genes, Bacterial , Nitrogen Fixation/genetics , Phylogeny , Rhizobiaceae/metabolism , Soil Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...