Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(17)2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37687460

ABSTRACT

Soil properties are the most important factors determining the safety of civil engineering structures. One of the soil improvement methods studied, mainly under laboratory conditions, is the use of microbially induced calcite precipitation (MICP). Many factors influencing the successful application of the MICP method can be distinguished; however, one of the most important factors is the composition of the bio-cementation solution. This study aimed to propose an optimal combination of a bio-cementation solution based on carbonate precipitation, crystal types, and the comprehensive strength of fine sand after treatment. A series of laboratory tests were conducted with the urease-producing environmental strain of bacteria B. subtilis, using various combinations of cementation solutions containing precipitation precursors (H2NCONH2, C6H10CaO6, CaCl2, MgCl2). To decrease the environmental impact and increase the efficiency of MICP processed, the addition of calcium lactate (CaL) and Mg ions was evaluated. This study was conducted in Petri dishes, assuming a 14-day soil treatment period. The content of water-soluble carbonate precipitates and their mineralogical characterization, as well as their mechanical properties, were determined using a pocket penetrometer test. The studies revealed that a higher concentration of CaL and Mg in the cementation solution led to the formation of a higher amount of precipitates during the cementation process. However, the crystal forms were not limited to stable forms, such as calcite, aragonite, (Ca, Mg)-calcite, and dolomite, but also included water-soluble components such as nitrocalcite, chloro-magnesite, and nitromagnesite. The presence of bacteria allowed for the increasing of the carbonate content by values ranging from 15% to 42%. The highest comprehensive strength was achieved for the bio-cementation solution containing urea (0.25 M), CaL (0.1 M), and an Mg/Ca molar ratio of 0.4. In the end, this research helped to achieve higher amounts of precipitates with the optimum combination of bio-cementation solutions for the soil improvement process. However, the numerical analysis of the precipitation processes and the methods reducing the environmental impact of the technology should be further investigated.

2.
Materials (Basel) ; 15(23)2022 Nov 28.
Article in English | MEDLINE | ID: mdl-36499986

ABSTRACT

Stabilization/solidification of contaminated soil is a process that allows simultaneous strengthening of the soil structure, disposal of contamination and recycling of industrial waste, implemented as substitutes for Portland cement or additives to improve the properties of the final product obtained. Extremely intensive development of studies pertaining to the S/S process prompted the authors to systematize the binders used and the corresponding methods of binding the contamination, and to perform an analysis of the effectiveness expressed in geomechanical properties and leachability. The study pays close attention to the types of additives and binders of waste origin, as well as the ecological and economic benefits of their use. The methods of preparing and caring for the specimens were reviewed, in addition to the methods of testing the effectiveness of the S/S process, including the influence of aging factors on long-term properties. The results of the analyses carried out are presented in the form of diagrams and charts, facilitating individual evaluation of the various solutions for the stabilization/solidification of soils contaminated with heavy metals.

3.
Materials (Basel) ; 13(22)2020 Nov 20.
Article in English | MEDLINE | ID: mdl-33233791

ABSTRACT

Concrete is the most commonly used structural material, without which modern construction could not function. It is a material with a high potential to adapt to specific operating conditions. The use of this potential is made by its material modification. The aim of the performed investigations was the assessment of rational application possibilities of fly ashes from thermally conversed municipal sewage sludge as an alternative concrete admixture. A concrete mix was designed, based on the Portland cement CEM I 42.5R and containing various quantity of ash, amounting to 0-25% of cement mass. The samples were conditioned and heated in a furnace at the temperature of 300 °C, 500 °C, and 700 °C. Physical and chemical properties of the ashes as well as utility properties of the concrete, i.e., density, compressive strength after 28, 56, and 90 days of maturation, frost resistance, and compressive strength in high temperature were determined. The tests were performed at cubic samples with 10 cm edge. The replacement of a determined cement quantity by the fly ashes enables obtaining a concrete composite having good strength parameters. The concrete modified by the fly ashes constituting 20% of the cement mass achieved its average compressive strength after 28 days of maturation equal to 50.12 MPa, after 56 days 50.61 MPa and after 90 days 50.80 MPa. The temperature growth weakens the composite structure. The obtained results confirm the possibility of waste recycling in the form of fly ashes as a cement substitute in concrete manufacturing.

4.
Materials (Basel) ; 13(2)2020 Jan 19.
Article in English | MEDLINE | ID: mdl-31963952

ABSTRACT

This article focuses on the impact of fly ash from the combustion of municipal sewage sludge (FAMSS) as a cement additive in the amounts of 5%, 10%, 15%, 20% and 25% (by mass) on selected concrete properties. In the course of the experimental work, water penetration depth and compressive strength measurements were made at various periods of curing (from 2 to 365 days). In addition, the potential impact of FAMSS on the natural environment was examined by determining the leachability of heavy metals. FAMSS-modified concretes showed small values of water penetration depth (lower than 50 mm), as well as good compressive strength (reaching minimum class C30/37 after 130 days of maturing)-similar to the compressive strength obtained for conventional concrete. In addition, the partial replacement of cement with FAMSS has environmental benefits, expressed as a reduction in CO2 emissions. In addition, study has shown that compliance with environmental requirements is associated with heavy metal leaching.

5.
Int J Environ Res Public Health ; 12(10): 13372-87, 2015 Oct 23.
Article in English | MEDLINE | ID: mdl-26512684

ABSTRACT

Express roads are a potential source of heavy metal contamination in the surrounding environment. The Warsaw Expressway (E30) is one of the busiest roads in the capital of Poland and cuts through the ecologically valuable area (Mazowiecki Natural Landscape Park). Soil samples were collected at distances of 0.5, 4.5 and 25 m from the expressway. The concentrations of cadmium (Cd), copper (Cu), nickel (Ni), lead (Pb), and zinc (Zn) were determined in the soils by the flame atomic absorption spectrometry method (FAAS). Soils located in the direct proximity of the analyzed stretch of road were found to have the highest values of pH and electrical conductivity (EC), which decreased along with an increase in the distance from the expressway. The contents of Cd, Cu and Zn were found to be higher than Polish national averages, whereas the average values of Ni and Pb were not exceeded. The pollution level was estimated based on the geo-accumulation index (Igeo), and the pollution index (PI). The results of Igeo and PI indexes revealed the following orders: Cu < Zn < Ni < Cd < Pb and Cu < Ni < Cd < Zn < Pb, and comparison with geochemical background values showed higher concentration of zinc, lead and cadmium.


Subject(s)
Environmental Pollution/analysis , Metals, Heavy/analysis , Soil Pollutants/analysis , Soil/chemistry , Cadmium/analysis , Copper/analysis , Ecology , Environmental Monitoring , Nickel/analysis , Poland , Spectrophotometry, Atomic , Zinc/analysis
6.
Environ Technol ; 36(9-12): 1576-83, 2015.
Article in English | MEDLINE | ID: mdl-25496055

ABSTRACT

In this paper, the ability of granular activated carbon (GAC), silica spongolite (SS) and zeolite (Z) to remove heavy metals from aqueous solutions has been investigated through column tests. The breakthrough times for a mobile tracer that does not sorb to the material for SS, GAC and layered SS, Z and GAC were as follows: 2.54×10(4) s, 2.38×10(4) s and 3.02×10(4) s. The breakthrough time (tbR) for Ni was in the range from tbR=1.70×10(6) s for SS, through tbR=3.98×10(5) s for the layered bed, to tbR=8.75×10(5) s for GAC. The breakthrough time for Cd was in the range from tbR=1.83×10(5) s for GAC to tbR=1.30×10(6) s for SS, Z, GAC. During the experiment, the concentration of Cd, Cu, Pb and Zn in the solution from a column filled with construction aggregate and the concentration of Pb, and Cu in a filtrate from the column filled with several materials was close to zero. The reduction in metal ions removal was due to high pH values of the solution (above 8.00). In addition, during the testing period, an increase in Cd and Zn concentrations in the filtrate from the column filled with the layered bed was observed, but at the end of the experiment the concentrations did not reach the maximum values. The test results suggest that the multilayered permeable reactive barrier is the most effective technology for long time effective removal of heavy metals.


Subject(s)
Drainage, Sanitary , Metals, Heavy/isolation & purification , Water Pollutants, Chemical/isolation & purification , Adsorption , Carbon , Hydrodynamics , Silicon Dioxide , Zeolites
SELECTION OF CITATIONS
SEARCH DETAIL
...