Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 447: 403-14, 2013 Mar 01.
Article in English | MEDLINE | ID: mdl-23410862

ABSTRACT

This study aims to understand the influence of the microfacies and the determination of pre-existing flaws on the weathering behavior of two types of limestones. Therefore, both Lede and Noyant limestones were independently weathered by strong acid tests and freeze-thaw cycles. In order to characterize the weathering patterns inside the stones, a combination of high resolution X-ray CT, SEM-EDS and thin section microscopy was used. The advantage of high resolution X-ray CT is its non-destructive character and the obtained 3D structural information. By using this technique, a time-lapse sequence of the weathering patterns was obtained for both gypsum crust formation as well as crack formation due to freezing and thawing. This way, a clear link could be made with the initial non-weathered state. Thin section microscopy and SEM-EDS provided additional chemical information. The focus of this study lies in the processes that occur in the bioclast fragments in the stone and the influence of the surrounding cement or matrix. The results show that weathering patterns vary for both limestones although the causes of weathering were similar. In case of the Noyant stone, the weathering by crystallizing gypsum was mainly restricted to the microporous matrix of the stone, while in case of the Lede stone, several foraminifera and shell fragments were preferentially recrystallized. In general, the underlying microstructure determines the weathering pattern of the stone.

2.
Sci Total Environ ; 416: 436-48, 2012 Feb 01.
Article in English | MEDLINE | ID: mdl-22225825

ABSTRACT

Weathering processes have been studied in detail for many natural building stones. The most commonly used analytical techniques in these studies are thin-section petrography, SEM, XRD and XRF. Most of these techniques are valuable for chemical and mineralogical analysis of the weathering patterns. However, to obtain crucial quantitative information on structural evolutions like porosity changes and growth of weathering crusts in function of time, non-destructive techniques become necessary. In this study, a Belgian historical calcareous sandstone, the Lede stone, was exposed to gaseous SO(2) under wet surface conditions according to the European Standard NBN EN 13919 (2003). Before, during and after the strong acid test, high resolution X-ray tomography has been performed to visualize gypsum crust formation to yield a better insight into the effects of gaseous SO(2) on the pore modification in 3D. The tomographic scans were taken at the Centre for X-ray Tomography at Ghent University (UGCT). With the aid of image analysis, partial porosity changes were calculated in different stadia of the process. Increasing porosity has been observed visually and quantitatively below the new superficial formed layer of gypsum crystals. In some cases micro-cracks and dissolution zones were detected on the grain boundaries of quartz. By using Morpho+, an in-house developed image analysis program, radial porosity, partial porosity, ratio of open and closed porosity and equivalent diameter of individual pore structures have been calculated. The results obtained in this study are promising for a better understanding of gypsum weathering mechanisms, porosity changes and patterns on natural building stones in four dimensions.


Subject(s)
Construction Materials , Four-Dimensional Computed Tomography/methods , Belgium , Calcium Sulfate , Construction Materials/standards , Netherlands , Porosity , Quartz , Time Factors , Tomography, X-Ray/methods , Weather
SELECTION OF CITATIONS
SEARCH DETAIL
...