Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Mater Sci Mater Med ; 30(9): 99, 2019 Aug 27.
Article in English | MEDLINE | ID: mdl-31455977

ABSTRACT

Adipose-derived mesenchymal stem cells (ASCs) accelerate the osteointegration of bone grafts and improve the efficiency in the formation of uniform bone tissue, providing a practical and clinically attractive approach in bone tissue regeneration. In this work, the effect of nanofibrous biomimetic matrices composed of poly(ε-caprolactone) (PCL), nanometric hydroxyapatite (nHA) particles and 14-3-3 protein isoform epsilon on the initial stages of human ASCs (hASCs) osteogenic differentiation was investigated. The cells were characterized by flow cytometry and induction to differentiation to adipogenic and osteogenic lineages. The isolated hASCs were induced to differentiate to osteoblasts over all scaffolds, and adhesion and viability of the hASCs were found to be similar. However, the activity of alkaline phosphatase (ALP) as early osteogenic marker in the PCL-nHA/protein scaffold was four times higher than in PCL-nHA and more than five times than the measured in neat PCL.


Subject(s)
14-3-3 Proteins , Durapatite , Mesenchymal Stem Cells/drug effects , Osteogenesis/drug effects , Polyesters , Tissue Scaffolds/chemistry , 14-3-3 Proteins/chemistry , 14-3-3 Proteins/pharmacology , Cell Differentiation/drug effects , Cell Differentiation/physiology , Cells, Cultured , Durapatite/chemistry , Durapatite/pharmacology , Electroplating/methods , Humans , Materials Testing , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/physiology , Nanofibers/chemistry , Osteoblasts/drug effects , Osteoblasts/physiology , Osteogenesis/physiology , Polyesters/chemistry , Polyesters/pharmacology , Subcutaneous Fat, Abdominal/cytology , Surface Properties/drug effects , Tissue Engineering/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...