Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Biol Interact ; 351: 109736, 2022 Jan 05.
Article in English | MEDLINE | ID: mdl-34740600

ABSTRACT

The aim of the present study was investigate the binding affinity of 5-((4-methoxyphenyl)thio)benzo[c][1,2,5]thiadiazole (MTDZ) with acetylcholinesterase (AChE). We also evaluated the effect of MTDZ against scopolamine (SCO)-induced amnesia in mice and we looked at the toxicological potential of this compound in mice. The binding affinity of MTDZ with AChE was investigated by molecular docking analyses. For an experimental model, male Swiss mice were treated daily with MTDZ (10 mg/kg, intragastrically (i.g.)) or canola oil (10 ml/kg, i.g.), and induced, 30 min later, with injection of SCO (0.4 mg/kg, intraperitoneally (i.p.)) or saline (0.9%, 5 ml/kg, i.p.) daily. From day 1 to day 10, mice were submitted to the behavioral tasks (Barnes maze, open-field, object recognition and location, Y-maze and step-down inhibitory avoidance tasks), 30 min after induction with SCO. On the tenth day, the animals were euthanized and blood was collected for the analysis of biochemical markers (creatinine, aspartate (AST), and alanine (ALT) aminotransferase). MTDZ interacts with residues of the AChE active site. SCO caused amnesia in mice by changing behavioral tasks. MTDZ treatment attenuated the behavioral changes caused by SCO. In ex vivo assay, MTDZ also protected against the alteration of AChE activity, reactive species (RS) levels, thiobarbituric acid reative species (TBARS) levels, catalase (CAT) activity in tissues, as well as in transaminase activities of plasma caused by SCO in mice. In conclusion, MTDZ presented anti-amnesic action through modulation of the cholinergic system and provided protection from kidney and liver damage caused by SCO.


Subject(s)
Acetylcholinesterase/metabolism , Amnesia/drug therapy , Cholinesterase Inhibitors/therapeutic use , Nootropic Agents/therapeutic use , Sulfides/therapeutic use , Thiadiazoles/therapeutic use , Amnesia/chemically induced , Animals , Avoidance Learning/drug effects , Cholinesterase Inhibitors/metabolism , Male , Maze Learning/drug effects , Mice , Molecular Docking Simulation , Nootropic Agents/metabolism , Protein Binding , Scopolamine , Sulfides/metabolism , Thiadiazoles/metabolism
2.
Metab Brain Dis ; 36(5): 871-888, 2021 06.
Article in English | MEDLINE | ID: mdl-33651275

ABSTRACT

Alzheimer's disease (AD) is a worldwide problem, and there are currently no treatments that can stop this disease. To investigate the binding affinity of 6-((4-fluorophenyl) selanyl)-9H-purine (FSP) with acetylcholinesterase (AChE), to verify the effects of FSP in an AD model in mice and to evaluate the toxicological potential of this compound in mice. The binding affinity of FSP with AChE was investigated by molecular docking analyses. The AD model was induced by streptozotocin (STZ) in Swiss mice after FSP treatment (1 mg/kg, intragastrically (i.g.)), 1st-10th day of the experimental protocol. Anxiety was evaluated in an elevated plus maze test, and memory impairment was evaluated in the Y-maze, object recognition and step-down inhibitory avoidance tasks. The cholinergic system was investigated based on by looking at expression and activity of AChE and expression of choline acetyltransferase (ChAT). We evaluated expression and activity of Na+/K+-ATPase. For toxicological analysis, animals received FSP (300 mg/kg, i.g.) and aspartate aminotransferase, alanine aminotransferase activities were determined in plasma and δ-aminolevulinate dehydratase activity in brain and liver. FSP interacts with residues of the AChE active site. FSP mitigated the induction of anxiety and memory impairment caused by STZ. FSP protected cholinergic system dysfunction and reduction of activity and expression of Na+/K+-ATPase. FSP did not modify toxicological parameters evaluated and did not cause the death of mice. FSP protected against anxiety, learning and memory impairment with involvement of the cholinergic system and Na+/K+-ATPase in these actions.


Subject(s)
Alzheimer Disease/drug therapy , Anxiety/drug therapy , Behavior, Animal/drug effects , Memory/drug effects , Selenium/pharmacology , Sodium-Potassium-Exchanging ATPase/metabolism , Acetylcholinesterase/metabolism , Alzheimer Disease/metabolism , Animals , Anxiety/metabolism , Avoidance Learning/drug effects , Choline O-Acetyltransferase/metabolism , Disease Models, Animal , Male , Mice , Molecular Docking Simulation , Selenium/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...