Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 2109, 2023 04 13.
Article in English | MEDLINE | ID: mdl-37055410

ABSTRACT

Chemotherapy prior to immune checkpoint blockade (ICB) treatment appears to improve ICB efficacy but resistance to ICB remains a clinical challenge and is attributed to highly plastic myeloid cells associating with the tumor immune microenvironment (TIME). Here we show by CITE-seq single-cell transcriptomic and trajectory analyses that neoadjuvant low-dose metronomic chemotherapy (MCT) leads to a characteristic co-evolution of divergent myeloid cell subsets in female triple-negative breast cancer (TNBC). Specifically, we identify that the proportion of CXCL16 + myeloid cells increase and a high STAT1 regulon activity distinguishes Programmed Death Ligand 1 (PD-L1) expressing immature myeloid cells. Chemical inhibition of STAT1 signaling in MCT-primed breast cancer sensitizes TNBC to ICB treatment, which underscores the STAT1's role in modulating TIME. In summary, we leverage single-cell analyses to dissect the cellular dynamics in the tumor microenvironment (TME) following neoadjuvant chemotherapy and provide a pre-clinical rationale for modulating STAT1 in combination with anti-PD-1 for TNBC patients.


Subject(s)
Triple Negative Breast Neoplasms , Humans , Female , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Radioimmunotherapy , Myeloid Cells , Chemokine CXCL16 , Tumor Microenvironment , STAT1 Transcription Factor/genetics
2.
Front Mol Biosci ; 9: 971219, 2022.
Article in English | MEDLINE | ID: mdl-36523654

ABSTRACT

We and others have previously shown that the presence of renal innate immune cells can promote polycystic kidney disease (PKD) progression. In this study, we examined the influence of the inflammasome, a key part of the innate immune system, on PKD. The inflammasome is a system of molecular sensors, receptors, and scaffolds that responds to stimuli like cellular damage or microbes by activating Caspase-1, and generating critical mediators of the inflammatory milieu, including IL-1ß and IL-18. We provide evidence that the inflammasome is primed in PKD, as multiple inflammasome sensors were upregulated in cystic kidneys from human ADPKD patients, as well as in kidneys from both orthologous (PKD1 RC/RC or RC/RC) and non-orthologous (jck) mouse models of PKD. Further, we demonstrate that the inflammasome is activated in female RC/RC mice kidneys, and this activation occurs in renal leukocytes, primarily in CD11c+ cells. Knock-out of Casp1, the gene encoding Caspase-1, in the RC/RC mice significantly restrained cystic disease progression in female mice, implying sex-specific differences in the renal immune environment. RNAseq analysis implicated the promotion of MYC/YAP pathways as a mechanism underlying the pro-cystic effects of the Caspase-1/inflammasome in females. Finally, treatment of RC/RC mice with hydroxychloroquine, a widely used immunomodulatory drug that has been shown to inhibit the inflammasome, protected renal function specifically in females and restrained cyst enlargement in both male and female RC/RC mice. Collectively, these results provide evidence for the first time that the activated Caspase-1/inflammasome promotes cyst expansion and disease progression in PKD, particularly in females. Moreover, the data suggest that this innate immune pathway may be a relevant target for therapy in PKD.

3.
Toxicol Sci ; 180(2): 342-355, 2021 04 12.
Article in English | MEDLINE | ID: mdl-33481012

ABSTRACT

Tributyltin (TBT) remains a global health concern. The primary route of human exposure to TBT is either through ingestion or skin absorption, but TBT's effects on the peripheral nervous system have still not been investigated. Therefore, we exposed in vitro sensory dorsal root ganglion (DRG) neurons to TBT at a concentration of 50-200 nM, which is similar to the observed concentrations of TBT in human blood samples. We observed that TBT causes extensive axon degeneration and neuronal death in the DRG neurons. Furthermore, we discovered that TBT causes an increase in both cytosolic and mitochondrial calcium levels, disrupts mitochondrial dynamics, decreases neuronal ATP levels, and leads to the activation of calpains. Additional experiments demonstrated that inhibition of calpain activation prevented TBT-induced fragmentation of neuronal cytoskeletal proteins and neuronal cell death. Thus, we conclude that calpain activation is the key executioner of TBT-induced peripheral neurodegeneration.


Subject(s)
Ganglia, Spinal , Mitochondrial Dynamics , Calcium , Calpain , Humans , Neurons , Trialkyltin Compounds
4.
Neurotoxicol Teratol ; 72: 58-70, 2019.
Article in English | MEDLINE | ID: mdl-30776472

ABSTRACT

Lead (Pb) is a teratogen that poses health risks after acute and chronic exposure. Lead is deposited in the bones of adults and is continuously leached into the blood for decades. While this chronic lead exposure can have detrimental effects on adults such as high blood pressure and kidney damage, developing fetuses and young children are particularly vulnerable. During pregnancy, bone-deposited lead is released into the blood at increased rates and can cross the placental barrier, exposing the embryo to the toxin. Embryos exposed to lead display serious developmental and cognitive defects throughout life. Although studies have investigated lead's effect on late-stage embryos, few studies have examined how lead affects stem cell determination and differentiation. For example, it is unknown whether lead is more detrimental to neuronal determination or differentiation of stem cells. We sought to determine the effect of lead on the determination and differentiation of pluripotent embryonic testicular carcinoma (P19) cells into neurons. Our data indicate that lead exposure significantly inhibits the determination of P19 cells to the neuronal lineage by alteration of N-cadherin and Sox2 expression. We also observed that lead significantly alters subsequent neuronal and glial differentiation. Consequently, this research emphasizes the need to reduce public exposure to lead.


Subject(s)
Cadherins/metabolism , Cell Differentiation/drug effects , Embryonal Carcinoma Stem Cells/drug effects , Environmental Pollutants/toxicity , Lead/toxicity , Neurons/drug effects , SOXB1 Transcription Factors/metabolism , Teratogens/toxicity , Animals , Cadherins/genetics , Cell Culture Techniques , Cell Survival/drug effects , Embryonal Carcinoma Stem Cells/metabolism , Gene Expression Regulation, Developmental/drug effects , Mice , Neurons/metabolism , SOXB1 Transcription Factors/genetics
5.
Neurochem Int ; 121: 86-97, 2018 12.
Article in English | MEDLINE | ID: mdl-30278188

ABSTRACT

Golgi fragmentation and loss of Nicotinamide Mononucleotide Adenylyltransferase 2 (NMNAT2) are the early key features of many neurodegenerative disorders. We investigated the link between NMNAT2 loss, Golgi fragmentation and axon degeneration. Golgi fragmentation in the cultured dorsal root ganglion (DRG) neurons resulted in caspase dependent axon degeneration and neuronal cell death. NMNAT2 depletion in the DRG neurons caused Golgi fragmentation and caspase dependent axon degeneration. NMNAT2 depletion did not cause ATP loss in the axons. These results indicate that NMNAT2 is required for maintenance of Golgi structure. Loss of Golgi structure or Nmnat2 depletion causes caspase dependent neurodegeneration. cytNmnat1 overexpression inhibited the axon degeneration induced by Golgi fragmentation or NMNAT2 depletion. These results also suggest that these degeneration signals converge on a common cytNmnat1 mediated axon protective program and are distinct from the SARM1 mediated caspase independent axon degeneration.


Subject(s)
Ganglia, Spinal/enzymology , Golgi Apparatus/enzymology , Neurons/enzymology , Nicotinamide-Nucleotide Adenylyltransferase/deficiency , Animals , Apoptosis/physiology , Cells, Cultured , Ganglia, Spinal/pathology , Golgi Apparatus/pathology , Mice , Neurons/pathology , Nicotinamide-Nucleotide Adenylyltransferase/antagonists & inhibitors , Nicotinamide-Nucleotide Adenylyltransferase/genetics , RNA, Small Interfering/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...