Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
In Vivo ; 36(4): 1615-1627, 2022.
Article in English | MEDLINE | ID: mdl-35738590

ABSTRACT

BACKGROUND/AIM: The therapeutic potential of bromodomain and extra-terminal motif (BET) inhibitors in hematological cancers has been well established in preclinical and early-stage clinical trials, although as of yet, no BETtargeting agent has achieved approval. To add insight into potential response to mivebresib (ABBV-075), a broadspectrum BET inhibitor, co-clinical modeling of individual patient biopsies was conducted in the context of a Phase I trial in acute myeloid leukemia (AML). MATERIALS AND METHODS: Co-clinical modeling involves taking the patient's biopsy and implanting it in mice with limited passage so that it closely retains the original characteristics of the malignancy and allows comparisons of response between animal model and clinical data. Procedures were developed, initially with neonate NOD/Shi-scid-IL2rγnull (NOG) mice and then optimized with juvenile NOG-EXL as host mice, eventually resulting in a robust rate of engraftment (16 out of 26, 62%). RESULTS: Results from the co-clinical AML patient-derived xenograft (PDX) modeling (6 with >60% inhibition of bone marrow blasts) were consistent with the equivalent clinical data from patients receiving mivebresib in monotherapy, and in combination with venetoclax. The modeling system also demonstrated the activity of a novel BD2-selective BET inhibitor (ABBV-744) in the preclinical AML setting. Both agents were also highly effective in inhibiting blast counts in the spleen (10/10 and 5/6 models, respectively). CONCLUSION: These findings confirm the validity of the model system in the co-clinical setting, establish highly relevant in vivo models for the discovery of cancer therapy, and indicate the therapeutic value of BET inhibitors for AML and, potentially, myelofibrosis treatment.


Subject(s)
Leukemia, Myeloid, Acute , Pyridones , Animals , Cell Line, Tumor , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/pathology , Mice , Mice, Inbred NOD , Mice, SCID , Pyridones/pharmacology , Pyridones/therapeutic use , Sulfonamides
2.
J Am Assoc Lab Anim Sci ; 58(5): 583-588, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31412976

ABSTRACT

In the development of cancer therapeutics, no suitable replacements for the use of animals that are capable of modeling such complex disease processes are currently available. In orthotopic models, surgery is often required to access the target organ for tumor cell inoculation. Historically analgesics have been withheld in such models in light of potential effects on tumor development. The current study evaluated the effect of the opioid buprenorphine on tumor growth of a human ovarian cancer cell line (OVCAR5 OT luc2 mCherry). Female CB17 SCID mice (n = 150) underwent surgery for orthotopic inoculation and were assigned to 1 of 3 treatment groups: vehicle control, 1 dose of buprenorphine, or 2 doses of buprenorphine administered perioperatively. Bioluminescence imaging revealed no significant difference on tumor engraftment rate or growth between control and analgesia-treated groups. These data demonstrate that acute, perioperative analgesia with buprenorphine did not alter tumor growth. Although further research is needed to evaluate potential effects of buprenorphine in other cell lines and mouse strains, the justification for withholding analgesia and the potential influence of pain and stress due to insufficient analgesia in these models should be considered thoroughly.


Subject(s)
Analgesics, Opioid , Buprenorphine , Ovarian Neoplasms , Pain , Animals , Female , Humans , Mice , Analgesia/methods , Analgesics, Opioid/administration & dosage , Buprenorphine/administration & dosage , Laboratory Animal Science , Mice, SCID , Ovarian Neoplasms/complications , Ovarian Neoplasms/veterinary , Pain/drug therapy , Pain/etiology , Pain Management , Pain, Postoperative/drug therapy
3.
J Med Chem ; 53(8): 3142-53, 2010 Apr 22.
Article in English | MEDLINE | ID: mdl-20337371

ABSTRACT

We have developed a series of phenylpyrrolidine- and phenylpiperidine-substituted benzimidazole carboxamide poly(ADP-ribose) polymerase (PARP) inhibitors with excellent PARP enzyme potency as well as single-digit nanomolar cellular potency. These efforts led to the identification of (S)-2-(2-fluoro-4-(pyrrolidin-2-yl)phenyl)-1H-benzimidazole-4-carboxamide (22b, A-966492). Compound 22b displayed excellent potency against the PARP-1 enzyme with a K(i) of 1 nM and an EC(50) of 1 nM in a whole cell assay. In addition, 22b is orally bioavailable across multiple species, crosses the blood-brain barrier, and appears to distribute into tumor tissue. It also demonstrated good in vivo efficacy in a B16F10 subcutaneous murine melanoma model in combination with temozolomide and in an MX-1 breast cancer xenograft model both as a single agent and in combination with carboplatin.


Subject(s)
Antineoplastic Agents/chemical synthesis , Benzimidazoles/chemical synthesis , Poly(ADP-ribose) Polymerase Inhibitors , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , BRCA1 Protein/deficiency , Benzimidazoles/pharmacology , Benzimidazoles/therapeutic use , Biological Availability , Blood-Brain Barrier/metabolism , Carboplatin/administration & dosage , Cell Line, Tumor , Crystallography, X-Ray , Dacarbazine/administration & dosage , Dacarbazine/analogs & derivatives , Drug Screening Assays, Antitumor , Female , Melanoma, Experimental/drug therapy , Mice , Mice, Inbred C57BL , Mice, SCID , Models, Molecular , Neoplasm Transplantation , Stereoisomerism , Structure-Activity Relationship , Temozolomide , Transplantation, Heterologous
4.
Cancer Chemother Pharmacol ; 66(5): 869-80, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20099064

ABSTRACT

PURPOSE: This study was designed to test the ability of the Bcl-2 family inhibitor ABT-263 to potentiate commonly used chemotherapeutic agents and regimens in hematologic tumor models. METHODS: Models of B-cell lymphoma and multiple myeloma were tested in vitro and in vivo with ABT-263 in combination with standard chemotherapeutic regimens, including VAP, CHOP and R-CHOP, as well as single cytotoxic agents including etoposide, rituximab, bortezomib and cyclophosphamide. Alterations in Bcl-2 family member expression patterns were analyzed to define mechanisms of potentiation. RESULTS: ABT-263 was additive with etoposide, vincristine and VAP in vitro in the diffuse large B-cell lymphoma line (DLBCL) DoHH-2, while rituximab potentiated its activity in SuDHL-4. Bortezomib strongly synergized with ABT-263 in the mantle cell lymphoma line Granta 519. Treatment of DoHH-2 with etoposide was associated with an increase in Puma expression, while bortezomib upregulated Noxa expression in Granta 519. Combination of ABT-263 with cytotoxic agents demonstrated superior tumor growth inhibition and delay in multiple models versus cytotoxic therapy alone, along with significant improvements in tumor response rates. CONCLUSIONS: Inhibition of the Bcl-2 family of proteins by ABT-263 enhances the cytotoxicity of multiple chemotherapeutics in hematologic tumors and represents a promising addition to the therapeutic arsenal for treatment of these diseases.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Lymphoma, B-Cell/drug therapy , Multiple Myeloma/drug therapy , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Aniline Compounds/administration & dosage , Animals , Apoptosis Regulatory Proteins/genetics , Cell Line, Tumor , Drug Synergism , Humans , Lymphoma, B-Cell/pathology , Mice , Mice, SCID , Multiple Myeloma/pathology , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins c-bcl-2/genetics , Sulfonamides/administration & dosage , Xenograft Model Antitumor Assays
5.
Clin Cancer Res ; 15(23): 7277-90, 2009 Dec 01.
Article in English | MEDLINE | ID: mdl-19934293

ABSTRACT

PURPOSE: ABT-888, currently in phase 2 trials, is a potent oral poly(ADP-ribose) polymerase inhibitor that enhances the activity of multiple DNA-damaging agents, including temozolomide (TMZ). We investigated ABT-888+TMZ combination therapy in multiple xenograft models representing various human tumors having different responses to TMZ. EXPERIMENTAL DESIGN: ABT-888+TMZ efficacy in xenograft tumors implanted in subcutaneous, orthotopic, and metastatic sites was assessed by tumor burden, expression of poly(ADP-ribose) polymer, and O(6)-methylguanine methyltransferase (MGMT). RESULTS: Varying levels of ABT-888+TMZ sensitivity were evident across a broad histologic spectrum of models (55-100% tumor growth inhibition) in B-cell lymphoma, small cell lung carcinoma, non-small cell lung carcinoma, pancreatic, ovarian, breast, and prostate xenografts, including numerous regressions. Combination efficacy in otherwise TMZ nonresponsive tumors suggests that TMZ resistance may be overcome by poly(ADP-ribose) polymerase inhibition. Profound ABT-888+TMZ efficacy was seen in experimental metastases models that acquired resistance to TMZ. Moreover, TMZ resistance was overcome in crossover treatments, indicating that combination therapy may overcome acquired TMZ resistance. Neither tumor MGMT, mismatch repair, nor poly(ADP-ribose) polymer correlated with the degree of sensitivity to ABT-888+TMZ. CONCLUSIONS: Robust ABT-888+TMZ efficacy is observed across a spectrum of tumor types, including orthotopic and metastatic implantation. As many TMZ nonresponsive tumors proved sensitive to ABT-888+TMZ, this novel combination may broaden the clinical use of TMZ beyond melanoma and glioma. Although TMZ resistance may be influenced by MGMT, neither MGMT nor other mechanisms of TMZ resistance (mismatch repair) precluded sensitivity to ABT-888+TMZ. Underlying mechanisms of TMZ resistance in these models are not completely understood but likely involve mechanisms independent of MGMT.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Benzimidazoles/administration & dosage , Dacarbazine/analogs & derivatives , Animals , Antineoplastic Agents, Alkylating/administration & dosage , DNA Damage , DNA Modification Methylases/metabolism , DNA Repair , DNA Repair Enzymes/metabolism , Dacarbazine/administration & dosage , Drug Resistance, Neoplasm , Drug Screening Assays, Antitumor , Humans , Mice , Mice, SCID , Neoplasm Metastasis , Neoplasm Transplantation , Temozolomide , Tumor Suppressor Proteins/metabolism
6.
J Med Chem ; 52(21): 6803-13, 2009 Nov 12.
Article in English | MEDLINE | ID: mdl-19888760

ABSTRACT

Small molecule inhibitors of PARP-1 have been pursued by various organizations as potential therapeutic agents either capable of sensitizing cytotoxic treatments or acting as stand-alone agents to combat cancer. As one of the strategies to expand our portfolio of PARP-1 inhibitors, we pursued unsaturated heterocycles to replace the saturated cyclic amine derivatives appended to the benzimidazole core. Not only did a variety of these new generation compounds maintain high enzymatic potency, many of them also displayed robust cellular activity. For example, the enzymatic IC(50) and cellular EC(50) values were as low as 1 nM or below. Compounds 24 (EC(50) = 3.7 nM) and 44 (EC(50) = 7.8 nM), featuring an oxadiazole and a pyridine moiety, respectively, demonstrated balanced potency and PK profiles. In addition, these two molecules exhibited potent oral in vivo efficacy in potentiating the cytotoxic agent temozolomide in a B16F10 murine melanoma model.


Subject(s)
Antineoplastic Agents/chemical synthesis , Benzimidazoles/chemical synthesis , Oxadiazoles/chemical synthesis , Poly(ADP-ribose) Polymerase Inhibitors , Pyridines/chemical synthesis , Administration, Oral , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Antineoplastic Agents, Alkylating , Benzimidazoles/pharmacokinetics , Benzimidazoles/pharmacology , Biological Availability , Cell Line, Tumor , Dacarbazine/analogs & derivatives , Dacarbazine/pharmacology , Drug Synergism , Female , Humans , Male , Melanoma, Experimental/drug therapy , Mice , Mice, Inbred C57BL , Neoplasm Transplantation , Oxadiazoles/pharmacokinetics , Oxadiazoles/pharmacology , Poly (ADP-Ribose) Polymerase-1 , Pyridines/pharmacokinetics , Pyridines/pharmacology , Structure-Activity Relationship , Temozolomide , Transplantation, Heterologous
7.
Anticancer Drugs ; 20(6): 483-92, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19398903

ABSTRACT

ABT-751 is an orally bioavailable tubulin-binding agent that is currently under clinical development for cancer treatment. In preclinical studies, ABT-751 showed antitumor activity against a broad spectrum of tumor lines including those resistant to conventional chemotherapies. In this study, we investigated the antivascular properties of ABT-751 in a rat subcutaneous tumor model using dynamic contrast-enhanced magnetic resonance imaging. A single dose of ABT-751 (30 mg/kg, intravenously) induced a rapid, transient reduction in tumor perfusion. After 1 h, tumor perfusion decreased by 57% before recovering to near pretreatment levels within 6 h. In contrast, ABT-751 produced little change in muscle perfusion at either time point. To further elucidate mechanisms of drug action at the cellular level, we examined the effects of ABT-751 on endothelial cells using an in-vitro assay. ABT-751, at concentrations corresponding to plasma levels achieved in vivo, caused endothelial cell retraction and significant loss of microtubules within 1 h. The severity of these morphological changes was dose-dependent but reversible within 6 h after the discontinuation of the drug. Taken together, these results show that ABT-751 is a tubulin-binding agent with antivascular properties. Microtubule disruption and morphological changes in vascular endothelial cells may be responsible, at least in part, for the dysfunction of tumor blood vessels after ABT-751 treatment.


Subject(s)
Angiogenesis Inhibitors/therapeutic use , Neoplasms, Experimental/drug therapy , Neovascularization, Pathologic/drug therapy , Sulfonamides/therapeutic use , Tubulin/metabolism , Actin Cytoskeleton/drug effects , Actin Cytoskeleton/metabolism , Angiogenesis Inhibitors/administration & dosage , Angiogenesis Inhibitors/pharmacology , Animals , Binding Sites , Cell Line, Tumor , Dose-Response Relationship, Drug , Endothelial Cells/drug effects , Endothelial Cells/pathology , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Endothelium, Vascular/pathology , Female , Humans , Magnetic Resonance Imaging , Microtubules/drug effects , Microtubules/metabolism , Neoplasm Transplantation , Neoplasms, Experimental/blood supply , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology , Protein Binding , Rats , Rats, Inbred F344 , Sulfonamides/administration & dosage , Sulfonamides/pharmacology
8.
J Med Chem ; 52(2): 514-23, 2009 Jan 22.
Article in English | MEDLINE | ID: mdl-19143569

ABSTRACT

We have developed a series of cyclic amine-containing benzimidazole carboxamide PARP inhibitors with a methyl-substituted quaternary center at the point of attachment to the benzimidazole ring system. These compounds exhibit excellent PARP enzyme potency as well as single-digit nanomolar cellular potency. These efforts led to the identification of 3a (2-[(R)-2-methylpyrrolidin-2-yl]-1H-benzimidazole-4-carboxamide, ABT-888), currently in human phase I clinical trials. Compound 3a displayed excellent potency against both the PARP-1 and PARP-2 enzymes with a K(i) of 5 nM and in a C41 whole cell assay with an EC(50) of 2 nM. In addition, 3a is aqueous soluble, orally bioavailable across multiple species, and demonstrated good in vivo efficacy in a B16F10 subcutaneous murine melanoma model in combination with temozolomide (TMZ) and in an MX-1 breast cancer xenograft model in combination with either carboplatin or cyclophosphamide.


Subject(s)
Antineoplastic Agents/pharmacology , Benzimidazoles/pharmacology , Enzyme Inhibitors/pharmacology , Melanoma, Experimental/pathology , Poly(ADP-ribose) Polymerase Inhibitors , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacokinetics , Area Under Curve , Benzimidazoles/administration & dosage , Benzimidazoles/pharmacokinetics , Biological Availability , Carboplatin/administration & dosage , Cyclophosphamide/administration & dosage , Dacarbazine/administration & dosage , Dacarbazine/analogs & derivatives , Dogs , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/pharmacokinetics , Female , Haplorhini , Humans , Magnetic Resonance Spectroscopy , Mice , Mice, SCID , Rats , Temozolomide
9.
Anticancer Res ; 28(5A): 2625-35, 2008.
Article in English | MEDLINE | ID: mdl-19035287

ABSTRACT

ABT-888 is a potent, orally bioavailable PARP-1/2 inhibitor shown to potentiate DNA damaging agents. The ability to potentiate temozolomide (TMZ) and develop a biological marker for PARP inhibition was evaluated in vivo. Doses/schedules that achieve TMZ potentiation in the B16F10 syngeneic melanoma model were utilized to develop an ELISA to detect a pharmacodynamic marker, ADP ribose polymers (pADPr), after ABT 888 treatment. ABT-888 enhanced TMZ antitumor activity, in a dose-proportional manner with no observed toxicity (44-75% tumor growth inhibition vs. TMZ monotherapy), but did not show single agent activity. Extended ABT-888 dosing schedules showed no advantage compared to simultaneous TMZ administration. Efficacy correlated with plasma/tumor drug concentrations. Intratumor drug levels correlated with a dose-proportional/time-dependent reduction in pADPr. Potentiation of TMZ activity by ABT-888 correlated with drug levels and inhibition of PARP activity in vivo. ABT-888 is in Phase 1 trials using a validated ELISA based on the assay developed here to assess pharmacological effect.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Benzimidazoles/pharmacology , Dacarbazine/analogs & derivatives , Melanoma, Experimental/drug therapy , Poly(ADP-ribose) Polymerase Inhibitors , Animals , Antineoplastic Combined Chemotherapy Protocols/pharmacokinetics , Benzimidazoles/administration & dosage , Benzimidazoles/pharmacokinetics , Cell Line, Tumor , Dacarbazine/administration & dosage , Dacarbazine/pharmacokinetics , Dacarbazine/pharmacology , Drug Administration Schedule , Drug Synergism , Melanoma, Experimental/enzymology , Melanoma, Experimental/metabolism , Mice , Poly Adenosine Diphosphate Ribose/metabolism , Poly(ADP-ribose) Polymerases/metabolism , Temozolomide
10.
Mol Cancer Ther ; 7(10): 3265-74, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18852130

ABSTRACT

ABT-263 is a potent, orally bioavailable inhibitor of the antiapoptotic Bcl-2 family members Bcl-2, Bcl-x(L), and Bcl-w, which is currently in phase I clinical trials. Previous work has shown that this compound has low nanomolar cell-killing activity in a variety of lymphoma and leukemia cell lines, many of which overexpress Bcl-2 through a variety of mechanisms. Rapamycin is a macrolide antibiotic that inhibits the mammalian target of rapamycin complex, leading to cell cycle arrest and inhibition of protein translation. Rapamycin (and its analogues) has shown activity in a variety of tumor cell lines primarily through induction of cell cycle arrest. Activity has also been shown clinically in mantle cell lymphoma and advanced renal cell carcinoma. Here, we show that treatment of the follicular lymphoma lines DoHH-2 and SuDHL-4 with 100 nmol/L rapamycin induces substantial G(0)-G(1) arrest. Addition of as little as 39 nmol/L ABT-263 to the rapamycin regimen induced a 3-fold increase in sub-G(0) cells. Combination of these agents also led to a significant increase in Annexin V staining over ABT-263 alone. In xenograft models of these tumors, rapamycin induced a largely cytostatic response in the DoHH-2 and SuDHL-4 models. Coadministration with ABT-263 induced significant tumor regression, with DoHH-2 and SuDHL-4 tumors showing 100% overall response rates. Apoptosis in these tumors was significantly enhanced by combination therapy as measured by staining with an antibody specific for cleaved caspase-3. These data suggest that combination of ABT-263 and rapamycin or its analogues represents a promising therapeutic strategy for the treatment of lymphoma.


Subject(s)
Aniline Compounds/pharmacology , Antineoplastic Agents/pharmacology , Lymphoma, Large B-Cell, Diffuse/pathology , Sirolimus/pharmacology , Sulfonamides/pharmacology , Animals , Cell Cycle/drug effects , Cell Death/drug effects , Cell Line, Tumor , Drug Synergism , Humans , Immunohistochemistry , Lymphoma, Large B-Cell, Diffuse/therapy , Mice , Mice, SCID , Remission Induction , Xenograft Model Antitumor Assays
11.
Anal Biochem ; 381(2): 240-7, 2008 Oct 15.
Article in English | MEDLINE | ID: mdl-18674509

ABSTRACT

Many established cancer therapies involve DNA-damaging chemotherapy or radiotherapy. The DNA repair capacity of the tumor represents a common mechanism used by cancer cells to survive DNA-damaging therapy. Poly(ADP-ribose) polymerase (PARP) is a nuclear enzyme that is activated by DNA damage and has critical roles in DNA repair. Inhibition of PARP potentiates the activity of DNA-damaging agents such as temozolomide, topoisomerase inhibitors and radiation in both in vitro and in vivo preclinical models. Recently, several PARP inhibitors have entered clinical trials either as single agents or in combination with DNA-damaging chemotherapy. Because PARP inhibitors are not cytotoxic, a biomarker assay is useful to guide the selection of an optimal biological dose. We set out to develop an assay that enables us to detect 50% PAR reduction in human tumors with 80% power in a single-plate assay while assuring no more than a 10% false-positive rate. We have developed and optimized an enzyme-linked immunosorbent assay (ELISA) to measure PARP activity that meets the above-mentioned criterion. This robust assay is able to detect PAR levels of 30-2000 pg/ml in both tumor and peripheral blood monocyte samples. In a B16F10 mouse syngeneic tumor model, PARP inhibitor ABT-888 potentiates the effect of temozolomide in suppressing tumor growth, and PARP activity is greatly reduced by ABT-888 at efficacious doses. In summary, the ELISA assay described here is suitable for biomarker studies in clinical trials of PARP inhibitors.


Subject(s)
Antineoplastic Agents/pharmacology , Benzimidazoles/pharmacology , Enzyme Inhibitors/pharmacology , Enzyme-Linked Immunosorbent Assay/methods , Poly(ADP-ribose) Polymerases/analysis , Animals , Benzimidazoles/chemistry , Biomarkers/analysis , Clinical Trials as Topic , Dacarbazine/analogs & derivatives , Dacarbazine/pharmacology , Disease Models, Animal , Female , Humans , Melanoma, Experimental/enzymology , Mice , Poly(ADP-ribose) Polymerase Inhibitors , Poly(ADP-ribose) Polymerases/metabolism , Temozolomide
12.
Bioorg Med Chem ; 16(14): 6965-75, 2008 Jul 15.
Article in English | MEDLINE | ID: mdl-18541433

ABSTRACT

We have developed a series of cyclic amine-containing benzimidazole carboxamide poly(ADP-ribose)polymerase (PARP) inhibitors, with good PARP-1 enzyme potency, as well as cellular potency. These efforts led to the identification of a lead preclinical candidate, 10b, 2-(1-propylpiperidin-4-yl)-1H-benzimidazole-4-carboxamide (A-620223). 10b displayed very good potency against both the PARP-1 enzyme with a K(i) of 8nM and in a whole cell assay with an EC(50) of 3nM. 10b is aqueous soluble, orally bioavailable across multiple species, and demonstrated good in vivo efficacy in a B16F10 subcutaneous murine melanoma model in combination with temozolomide (TMZ) and in an MX-1 breast xenograph model in combination with cisplatin.


Subject(s)
Benzimidazoles/chemistry , Benzimidazoles/pharmacology , Breast Neoplasms/drug therapy , Melanoma, Experimental/drug therapy , Poly(ADP-ribose) Polymerase Inhibitors , Animals , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Cisplatin/therapeutic use , Dacarbazine/analogs & derivatives , Dacarbazine/therapeutic use , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Humans , Mice , Structure-Activity Relationship , Temozolomide , Transplantation, Heterologous , Xenograft Model Antitumor Assays
13.
Clin Cancer Res ; 14(11): 3268-77, 2008 Jun 01.
Article in English | MEDLINE | ID: mdl-18519752

ABSTRACT

PURPOSE: The purpose of this study was to characterize the activity of the Bcl-2 protein family inhibitor ABT-263 in a panel of small cell lung cancer (SCLC) xenograft models. EXPERIMENTAL DESIGN: A panel of 11 SCLC xenograft models was established to evaluate the efficacy of ABT-263. Single agent activity was examined on a continuous dosing schedule in each of these models. The H146 model was used to further evaluate dose and schedule, comparison to standard cytotoxic agents, and induction of apoptosis. RESULTS: ABT-263 exhibited a range of antitumor activity, leading to complete tumor regression in several models. Significant regressions of tumors as large as 1 cc were also observed. The efficacy of ABT-263 was also quite durable; in several cases, minimal tumor regrowth was noted several weeks after the cessation of treatment. Antitumor effects were equal or superior to that of several clinically approved cytotoxic agents. Regression of large established tumors was observed through several cycles of therapy and efficacy was retained in a Pgp-1 overexpressing line. Significant efficacy was observed on several dose and therapeutic schedules and was associated with significant induction of apoptosis. CONCLUSIONS: ABT-263 is a potent, orally bioavailable inhibitor of Bcl-2 family proteins that has recently entered clinical trials. The efficacy data reported here suggest that SCLC is a promising area of clinical investigation with this agent.


Subject(s)
Aniline Compounds/administration & dosage , Antineoplastic Agents/administration & dosage , Carcinoma, Small Cell/drug therapy , Lung Neoplasms/drug therapy , Sulfonamides/administration & dosage , Animals , Dose-Response Relationship, Drug , Humans , Mice , Mice, Nude , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Proto-Oncogene Proteins c-bcl-2/drug effects , Xenograft Model Antitumor Assays
14.
Clin Cancer Res ; 13(9): 2728-37, 2007 May 01.
Article in English | MEDLINE | ID: mdl-17473206

ABSTRACT

PURPOSE: To evaluate the preclinical pharmacokinetics and antitumor efficacy of a novel orally bioavailable poly(ADP-ribose) polymerase (PARP) inhibitor, ABT-888. EXPERIMENTAL DESIGN: In vitro potency was determined in a PARP-1 and PARP-2 enzyme assay. In vivo efficacy was evaluated in syngeneic and xenograft models in combination with temozolomide, platinums, cyclophosphamide, and ionizing radiation. RESULTS: ABT-888 is a potent inhibitor of both PARP-1 and PARP-2 with K(i)s of 5.2 and 2.9 nmol/L, respectively. The compound has good oral bioavailability and crosses the blood-brain barrier. ABT-888 strongly potentiated temozolomide in the B16F10 s.c. murine melanoma model. PARP inhibition dramatically increased the efficacy of temozolomide at ABT-888 doses as low as 3.1 mg/kg/d and a maximal efficacy achieved at 25 mg/kg/d. In the 9L orthotopic rat glioma model, temozolomide alone exhibited minimal efficacy, whereas ABT-888, when combined with temozolomide, significantly slowed tumor progression. In the MX-1 breast xenograft model (BRCA1 deletion and BRCA2 mutation), ABT-888 potentiated cisplatin, carboplatin, and cyclophosphamide, causing regression of established tumors, whereas with comparable doses of cytotoxic agents alone, only modest tumor inhibition was exhibited. Finally, ABT-888 potentiated radiation (2 Gy/d x 10) in an HCT-116 colon carcinoma model. In each model, ABT-888 did not display single-agent activity. CONCLUSIONS: ABT-888 is a potent inhibitor of PARP, has good oral bioavailability, can cross the blood-brain barrier, and potentiates temozolomide, platinums, cyclophosphamide, and radiation in syngeneic and xenograft tumor models. This broad spectrum of chemopotentiation and radiopotentiation makes this compound an attractive candidate for clinical evaluation.


Subject(s)
Benzimidazoles/administration & dosage , Benzimidazoles/pharmacokinetics , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/pharmacokinetics , Neoplasms/drug therapy , Poly(ADP-ribose) Polymerase Inhibitors , Administration, Oral , Animals , Antineoplastic Agents, Alkylating/therapeutic use , Biological Availability , Blood-Brain Barrier/metabolism , Cell Line, Tumor , DNA Damage , Disease Models, Animal , Dogs , Drug Synergism , Female , Haplorhini , Humans , Male , Mice , Mice, Inbred Strains , Rats , Rats, Inbred Strains , Xenograft Model Antitumor Assays
15.
Cancer Res ; 66(17): 8731-9, 2006 Sep 01.
Article in English | MEDLINE | ID: mdl-16951189

ABSTRACT

Inhibition of the prosurvival members of the Bcl-2 family of proteins represents an attractive strategy for the treatment of cancer. We have previously reported the activity of ABT-737, a potent inhibitor of Bcl-2, Bcl-X(L), and Bcl-w, which exhibits monotherapy efficacy in xenograft models of small-cell lung cancer and lymphoma and potentiates the activity of numerous cytotoxic agents. Here we describe the biological activity of A-385358, a small molecule with relative selectivity for binding to Bcl-X(L) versus Bcl-2 (K(i)'s of 0.80 and 67 nmol/L for Bcl-X(L) and Bcl-2, respectively). This compound efficiently enters cells and co-localizes with the mitochondrial membrane. Although A-385358 shows relatively modest single-agent cytotoxic activity against most tumor cell lines, it has an EC(50) of <500 nmol/L in cells dependent on Bcl-X(L) for survival. In addition, A-385358 enhances the in vitro cytotoxic activity of numerous chemotherapeutic agents (paclitaxel, etoposide, cisplatin, and doxorubicin) in several tumor cell lines. In A549 non-small-cell lung cancer cells, A-385358 potentiates the activity of paclitaxel by as much as 25-fold. Importantly, A-385358 also potentiated the activity of paclitaxel in vivo. Significant inhibition of tumor growth was observed when A-385358 was added to maximally tolerated or half maximally tolerated doses of paclitaxel in the A549 xenograft model. In tumors, the combination therapy also resulted in a significant increase in mitotic arrest followed by apoptosis relative to paclitaxel monotherapy.


Subject(s)
Aniline Compounds/pharmacology , Antineoplastic Agents/therapeutic use , Biphenyl Compounds/therapeutic use , Lung Neoplasms/drug therapy , Nitrophenols/therapeutic use , Sulfonamides/pharmacology , Sulfonamides/therapeutic use , bcl-X Protein/antagonists & inhibitors , Aniline Compounds/pharmacokinetics , Aniline Compounds/therapeutic use , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Biphenyl Compounds/pharmacokinetics , Biphenyl Compounds/pharmacology , Cell Line, Tumor , Drug Synergism , Humans , Kinetics , Male , Mice , Mice, SCID , Nitrophenols/pharmacokinetics , Nitrophenols/pharmacology , Paclitaxel/pharmacokinetics , Piperazines/pharmacokinetics , Piperazines/pharmacology , Piperazines/therapeutic use , Sulfonamides/pharmacokinetics , Transplantation, Heterologous
16.
Mol Cancer Ther ; 2(3): 227-33, 2003 Mar.
Article in English | MEDLINE | ID: mdl-12657717

ABSTRACT

In this report, we describe the antitumor activity of A-289099, an indolyloxazoline derivative with antimitotic activity. A-289099 decreased the proliferation of a variety of cells with EC(50) values ranging from 5.1 to 12.8 nM in a P-glycoprotein-independent manner. In cultured cells, microtubules depolymerized in a time- and dose-dependent manner when treated with A-289099. In competition-binding assays, A-298099 competed with [(3)H]colchicine for binding to tubulin (K(i) = 0.65 micro M); however, it did not compete with [(3)H]paclitaxel or [(3)H]vincristine. There was an accumulation of cells in G(2)-M after treatment with A-289099 for 8 h and a subsequent increase in a subdiploid population and an increase in caspase-3 activity, indicative of apoptosis after treatment for 24 and 48 h. The antitumor activities of A-289099 were evaluated using the syngeneic M5076 murine reticulum sarcoma flank tumor model. Animals size-matched for established tumors ( approximately 350 mm(3)) were dosed p.o. (50 mg/kg every day) for 11 days starting on day 10 postinoculation. Tumors from A-289099-treated animals regressed throughout the 11-day dosing period with a percentage of the average treated-tumor-volume divided by the average vehicle-control-tumor-volume (% T/C) value of 11% after treatment for 7 days. Examination of tumor sections revealed an increase in internucleosomal DNA fragmentation or cell death within the central core after drug-treatment. A decrease in the perfusion of tumors was observed after drug-treatment that was localized primarily to the central core and closely associated with the regions of cell death. In summary, our findings indicate A-289099 is a promising, orally active tubulin-binding compound with antitumor activity in vivo.


Subject(s)
Antineoplastic Agents/therapeutic use , Indoles/therapeutic use , Oxazoles/therapeutic use , Sarcoma, Experimental/drug therapy , Tubulin/metabolism , Administration, Oral , Animals , Antineoplastic Agents/metabolism , Apoptosis/drug effects , Binding Sites , Caspase 3 , Caspases/metabolism , Cell Cycle/drug effects , Cell Cycle Proteins/metabolism , Cell Division/drug effects , Colchicine/metabolism , Dose-Response Relationship, Drug , Female , Humans , In Situ Nick-End Labeling , Indoles/metabolism , Mice , Mice, Inbred C57BL , Mitosis/drug effects , Oxazoles/metabolism , Paclitaxel/pharmacology , Sarcoma, Experimental/metabolism , Sarcoma, Experimental/pathology , Tumor Cells, Cultured/drug effects , Tumor Cells, Cultured/metabolism , Vincristine/pharmacology
17.
Bioorg Med Chem Lett ; 13(7): 1359-62, 2003 Apr 07.
Article in English | MEDLINE | ID: mdl-12657282

ABSTRACT

Inhibitors of farnesyltransferase are effective against a variety of tumors in mouse models of cancer. Clinical trials to evaluate these agents in humans are ongoing. In our effort to develop new farnesyltransferase inhibitors, we have discovered a series of aryl tetrahydropyridines that incorporate substituted glycine, phenylalanine and histidine residues. The design, synthesis, SAR and biological properties of these compounds will be discussed.


Subject(s)
Alkyl and Aryl Transferases/antagonists & inhibitors , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Glycine/analogs & derivatives , Histidine/analogs & derivatives , Phenylalanine/analogs & derivatives , Pyridines/chemical synthesis , Pyridines/pharmacology , Biological Availability , Crystallography, X-Ray , Enzyme Inhibitors/pharmacokinetics , Farnesyltranstransferase , Genes, ras/drug effects , Glycine/pharmacology , Histidine/pharmacology , Models, Molecular , Molecular Conformation , Phenylalanine/pharmacology , Structure-Activity Relationship
18.
Bioorg Med Chem Lett ; 13(7): 1363-6, 2003 Apr 07.
Article in English | MEDLINE | ID: mdl-12657283

ABSTRACT

Inhibitors of farnesyltransferase are effective against a variety of tumors in mouse models of cancer. Clinical trials to evaluate these agents in humans are ongoing. In our effort to develop new farnesyltransferase inhibitors, we have discovered bioavailable aryl tetrahydropyridines that are potent in cell culture. The design, synthesis, SAR and biological properties of these compounds will be discussed.


Subject(s)
Alkyl and Aryl Transferases/antagonists & inhibitors , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Pyridines/chemical synthesis , Pyridines/pharmacology , Alkylation , Animals , Biological Availability , Dogs , Enzyme Inhibitors/pharmacokinetics , Farnesyltranstransferase , Half-Life , Models, Molecular , Pyridines/pharmacokinetics , Structure-Activity Relationship
20.
Microbiology (Reading) ; 143 ( Pt 2): 367-376, 1997 Feb.
Article in English | MEDLINE | ID: mdl-9043114

ABSTRACT

The BGL2 gene encodes a unique 1,3-beta-glucosyltransferase (Bgl2p) present in the cell wall of Candida albicans and other fungi. Although believed to be involved in cell wall assembly, disruption of the gene in saccharomyces cerevisiae showed no apparent phenotype. We performed sequential disruptions of the BGL2 loci in a homozygous ura3 clinical isolate of C. albicans using the URA3 blaster method, in order to investigate the role of Bgl2p in this dimorphic, pathogenic fungus. Strain CACW-1 contained disruptions of both homologues of the BGL2 gene and lacked Bgl2p, as assessed by protein extraction, SDS-PAGE and Western blot analysis, and enzyme assay; however, residual non-Bgl2p transferase activity was detected. CACW-1 was attenuated in virulence for mice when compared to an isogenic parent strain, and fewer organisms were recovered from the kidneys of infected animals. Additional phenotypic changes included: (1) a dramatic increase in the sensitivity to the chitin synthesis inhibitor nikkomycin Z when CACW-1 cells were incubated at 37 or 42 degrees C; (2) an 8.7 +/- 1.6% slower growth rate at 37 degrees C for CACW-1 when compared to its isogenic parent; and (3) aggregation of CACW-1 cells during stationary phase and/or incubation of stationary phase cells in phosphate buffer. Characterization of SDS-extracted cell walls did not reveal any significant differences in the levels of 1,3-beta- or 1,6-beta-glucan. These data reveal that loss of Bgl2p does have a phenotype in C. albicans, and indicate that (1) loss of Bgl2p function renders cells more dependent on chitin for wall integrity, and attenuates virulence (probably due to subtle changes in wall structure), and (2) that additional 1,3-beta-glucosyltransferases are present in the C. albicans BGL2 disruptant.


Subject(s)
Candida albicans/genetics , Fungal Proteins/genetics , Genes, Fungal , Glucan Endo-1,3-beta-D-Glucosidase/genetics , Glucosyltransferases/genetics , Animals , Antifungal Agents/pharmacology , Candida albicans/enzymology , Candida albicans/pathogenicity , Candidiasis , Cell Wall/chemistry , Cell Wall/metabolism , Cell Wall/ultrastructure , Glucans/chemistry , Glycosylation , Kidney/microbiology , Mice , Microbial Sensitivity Tests , Mutagenesis , Phenotype , Virulence/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...