Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(19)2023 Oct 07.
Article in English | MEDLINE | ID: mdl-37837114

ABSTRACT

The purpose was to investigate full-body kinematics and vertical ground reaction forces in the lower extremities of the delivery and to determine delivery changes over time after many deliveries in ten-pin bowling. Six male elite ten-pin bowlers completed six bouts of twelve bowling deliveries, all strike attempts, while measuring full-body kinematics and vertical ground reaction forces. Full-body joint angles, peak vertical ground reaction forces in the feet, vertical breaking impulse, centre of mass velocity, bowling score, and ball release velocity (BRvel) were measured. Results revealed that the BRvel was significantly decreased over bouts (p < 0.001). Additionally, increased flexion of the dominant wrist (p < 0.001) and elbow (p = 0.004) prior to ball release (BR) and increased pronation of the dominant wrist during BR (p = 0.034) were observed at later bouts. It was concluded that these kinematic changes in the dominant wrist and elbow prior to and during BR were performed to compensate for the change in traction between ball and lane during a bowling match. This, in turn, caused a decrease in BRvel. A conservation of energy perspective was discussed to highlight training applications and possibilities to enhance elite athletes' bowling performance.


Subject(s)
Sports , Humans , Male , Biomechanical Phenomena , Upper Extremity , Lower Extremity , Foot
2.
J Electromyogr Kinesiol ; 53: 102441, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32629410

ABSTRACT

In this study, we investigated the effect of walker type on gait pattern characteristics comparing normal gait (NG), gait with a regular walker (RW), and gait with a newly developed walker with vertical moveable handlebars, the Crosswalker (CW). Partial weight bearing (PWB) of the feet, peak joint angles and largest Lyapunov exponent (λmax) of the lower extremities (hip, knee, ankle) in the sagittal plane, and gait parameters (gait velocity, stride length, cadence, stride duration) were determined for 18 healthy young adults performing 10 walking trials for each walking condition. Assistive gait with the CW improved local dynamic stability in the lower extremities (hip, knee, ankle) compared with RW and was not significantly different from NG. However, peak joint angles and stride characteristics in CW were different from NG. The PWB on the feet was lower with the RW (70.3%) compared to NG (82.8%) and CW (80.9%). This improved stability may be beneficial for the elderly and patients with impaired gait. However, increased PWB is not beneficial for patients during the early stages of rehabilitation.


Subject(s)
Gait/physiology , Muscle, Skeletal/physiology , Walkers/trends , Weight-Bearing/physiology , Adult , Biomechanical Phenomena/physiology , Female , Healthy Volunteers , Humans , Lower Extremity/physiology , Male , Walkers/standards , Walking/physiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...