Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Curr Biol ; 34(10): 2175-2185.e4, 2024 05 20.
Article in English | MEDLINE | ID: mdl-38718797

ABSTRACT

Relatively little is known about how peripheral nervous systems (PNSs) contribute to the patterning of behavior in which their role transcends the simple execution of central motor commands or mediation of reflexes. We sought to draw inferences to this end in the aeolid nudibranch Berghia stephanieae, which generates a rapid, dramatic defense behavior, "bristling." This behavior involves the coordinated movement of cerata, dozens of venomous appendages emerging from the animal's mantle. Our investigations revealed that bristling constitutes a stereotyped but non-reflexive two-stage behavior: an initial adduction of proximate cerata to sting the offending stimulus (stage 1) followed by a coordinated radial extension of remaining cerata to create a pincushion-like defensive screen around the animal (stage 2). In decerebrated specimens, stage 1 bristling was preserved, while stage 2 bristling was replaced by slower, uncoordinated ceratal movements. We conclude from these observations that, first, the animal's PNS and central nervous system (CNS) mediate stages 1 and 2 of bristling, respectively; second, the behavior propagates through the body utilizing both peripheral- and central-origin nerve networks that support different signaling kinetics; and third, the former network inhibits the latter in the body region being stimulated. These findings extend our understanding of the PNS' computational capacity and provide insight into a neuroethological scheme in which the CNS and PNS both independently and interactively pattern different aspects of non-reflexive behavior.


Subject(s)
Central Nervous System , Peripheral Nervous System , Animals , Central Nervous System/physiology , Peripheral Nervous System/physiology , Behavior, Animal/physiology , Invertebrates/physiology
2.
J Neurophysiol ; 132(1): 96-107, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38777746

ABSTRACT

In response to a suitably aversive skin stimulus, the marine mollusk Tritonia diomedea launches an escape swim followed by several minutes of high-speed crawling. The two escape behaviors are highly dissimilar: whereas the swim is a muscular behavior involving alternating ventral and dorsal whole body flexions, the crawl is a nonrhythmic gliding behavior mediated by the beating of foot cilia. The serotonergic dorsal swim interneurons (DSIs) are members of the swim central pattern generator (CPG) and also strongly drive crawling. Although the swim network is very well understood, the Tritonia crawling network to date comprises only three neurons: the DSIs and pedal neurons 5 and 21 (Pd5 and Pd21). Since Tritonia's swim network has been suggested to have arisen from a preexisting crawling network, we examined the possible role that another swim CPG neuron, C2, may play in crawling. Because of its complete silence in the postswim crawling period, C2 had not previously been considered to play a role in driving crawling. However, semi-intact preparation experiments demonstrated that a brief C2 spike train surprisingly and strongly drives the foot cilia for ∼30 s, something that cannot be explained by its synaptic connections to Pd5 and Pd21. Voltage-sensitive dye (VSD) imaging in the pedal ganglion identified many candidate crawling motor neurons that fire at an elevated rate after the swim and also revealed several pedal neurons that are strongly excited by C2. It is intriguing that unlike the DSIs, which fire tonically after the swim to drive crawling, C2 does so despite its postswim silence.NEW & NOTEWORTHY Tritonia swim central pattern generator (CPG) neuron C2 surprisingly and strongly drives the early phase of postswim crawling despite being silent during this period. In decades of research, C2 had not been suspected of driving crawling because of its complete silence after the swim. Voltage-sensitive dye imaging revealed that the Tritonia crawling motor network may be much larger than previously known and also revealed that many candidate crawling neurons are excited by C2.


Subject(s)
Central Pattern Generators , Interneurons , Swimming , Tritonia Sea Slug , Animals , Tritonia Sea Slug/physiology , Central Pattern Generators/physiology , Swimming/physiology , Interneurons/physiology , Action Potentials/physiology , Motor Neurons/physiology , Escape Reaction/physiology
3.
Sci Rep ; 13(1): 20490, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37993658

ABSTRACT

The distribution of the easy-axes in an array of MRAM cells is a vital parameter to understand the switching and characteristics of the devices. By measuring the coercivity as a function of applied-field angle, and remaining close to the perpendicular orientation, a classic Stoner-Wohlfarth approximation has been applied to the resulting variation to determine the standard deviation, [Formula: see text], of a Gaussian distribution of the orientation of the easy-magnetisation directions. In this work we have compared MRAM arrays with nominal cells sizes of 20 nm and 60 nm and a range of free layer thicknesses. We have found that a smaller diameter cell will have a wider switching-field distribution with a standard deviation [Formula: see text]. The MRAM arrays consist of pillars produced by etching a multilayer thin film. This value of [Formula: see text] is dominated by pillar uniformity and edge effects controlling the reversal, reinforcing the need for ever-improving etch processes. This is compared to larger pillars, with distributions as low as [Formula: see text]. Furthermore we found that the distribution broadens from [Formula: see text] to [Formula: see text] with free layer thickness in larger pillars and that thinner films had a more uniform easy-axis orientation. For the 20 nm pillars the non-uniform size distribution of the pillars, with a large and unknown error in the free-layer volume, was highlighted as it was found that the activation volume for the reversal of the free layer 930 nm[Formula: see text] was larger than the nominal physical volume of the free layer. However for the 60 nm pillars, the activation volume was measured to be equal to one fifth of their physical volume. This implies that the smaller pillars effectively reverse as one entity while the larger pillars reverse via an incoherent mechanism of nucleation and propagation.

4.
bioRxiv ; 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37577477

ABSTRACT

Relatively little is known about how the peripheral nervous system (PNS) contributes to the patterning of behavior, in which its role transcends the simple execution of central motor commands or mediation of reflexes. We sought to draw inferences to this end in the aeolid nudibranch Berghia stephanieae, which generates a rapid, dramatic defense behavior, "bristling." This behavior involves the coordinated movement of cerata, dozens of venomous appendages emerging from the animal's mantle. Our investigations revealed that bristling constitutes a stereotyped but non-reflexive two-stage behavior: an initial adduction of proximate cerata to sting the offending stimulus (Stage 1), followed by a coordinated radial extension of remaining cerata to create a pincushion-like defensive screen around the animal (Stage 2). In decerebrated specimens, Stage 1 bristling was preserved, while Stage 2 bristling was replaced by slower, uncoordinated, and ultimately maladaptive ceratal movements. We conclude from these observations that 1) the PNS and central nervous system (CNS) mediate Stages 1 and 2 of bristling, respectively; 2) the behavior propagates through the body utilizing both peripheral- and central-origin nerve networks that support different signaling kinetics; and 3) the former network inhibits the latter in the body region being stimulated. These findings extend our understanding of the PNS's computational capacity and provide insight into a neuroethological scheme that may generalize across cephalized animals, in which the CNS and PNS both independently and interactively pattern different aspects of non-reflexive behavior.

5.
Curr Biol ; 33(10): R398-R400, 2023 05 22.
Article in English | MEDLINE | ID: mdl-37220729

ABSTRACT

How are animals equipped with only diffusely distributed nerve nets able to generate complex behaviors? A new study in Hydra vulgaris proposes that a peptide-based 'wireless connectome' works in concert with two familiar network-coordinating mechanisms to generate the animal's remarkable somersault behavior.


Subject(s)
Connectome , Hydra , Animals , Nerve Net
6.
Article in English | MEDLINE | ID: mdl-37645242

ABSTRACT

Spectral inference on multiple networks is a rapidly-developing subfield of graph statistics. Recent work has demonstrated that joint, or simultaneous, spectral embedding of multiple independent networks can deliver more accurate estimation than individual spectral decompositions of those same networks. Such inference procedures typically rely heavily on independence assumptions across the multiple network realizations, and even in this case, little attention has been paid to the induced network correlation that can be a consequence of such joint embeddings. In this paper, we present a generalized omnibus embedding methodology and we provide a detailed analysis of this embedding across both independent and correlated networks, the latter of which significantly extends the reach of such procedures, and we describe how this omnibus embedding can itself induce correlation. This leads us to distinguish between inherent correlation-that is, the correlation that arises naturally in multisample network data-and induced correlation, which is an artifice of the joint embedding methodology. We show that the generalized omnibus embedding procedure is flexible and robust, and we prove both consistency and a central limit theorem for the embedded points. We examine how induced and inherent correlation can impact inference for network time series data, and we provide network analogues of classical questions such as the effective sample size for more generally correlated data. Further, we show how an appropriately calibrated generalized omnibus embedding can detect changes in real biological networks that previous embedding procedures could not discern, confirming that the effect of inherent and induced correlation can be subtle and transformative. By allowing for and deconstructing both forms of correlation, our methodology widens the scope of spectral techniques for network inference, with import in theory and practice.

7.
Sci Rep ; 11(1): 17382, 2021 08 30.
Article in English | MEDLINE | ID: mdl-34462484

ABSTRACT

The current information technology has been developed based on von Neumann type computation. In order to sustain the rate of development, it is essential to investigate alternative technologies. In a next-generation computation, an important feature is memory potentiation, which has been overlooked to date. In this study, potentiation functionality is demonstrated in a giant magnetoresistive (GMR) junction consisting of a half-metallic Heusler alloy which can be a candidate of an artificial synapse while still achieving a low resistance-area product for low power consumption. Here the Heusler alloy films are grown on a (110) surface to promote layer-by-layer growth to reduce their crystallisation energy, which is comparable with Joule heating induced by a controlled current introduction. The current-induced crystallisation leads to the reduction in the corresponding resistivity, which acts as memory potentiation for an artificial GMR synaptic junction.

8.
Sci Technol Adv Mater ; 22(1): 235-271, 2021 Mar 29.
Article in English | MEDLINE | ID: mdl-33828415

ABSTRACT

Heusler alloys are theoretically predicted to become half-metals at room temperature (RT). The advantages of using these alloys are good lattice matching with major substrates, high Curie temperature above RT and intermetallic controllability for spin density of states at the Fermi energy level. The alloys are categorised into half- and full-Heusler alloys depending upon the crystalline structures, each being discussed both experimentally and theoretically. Fundamental properties of ferromagnetic Heusler alloys are described. Both structural and magnetic characterisations on an atomic scale are typically carried out in order to prove the half-metallicity at RT. Atomic ordering in the films is directly observed by X-ray diffraction and is also indirectly probed via the temperature dependence of electrical resistivity. Element specific magnetic moments and spin polarisation of the Heusler alloy films are directly measured using X-ray magnetic circular dichroism and Andreev reflection, respectively. By employing these ferromagnetic alloy films in a spintronic device, efficient spin injection into a non-magnetic material and large magnetoresistance are also discussed. Fundamental properties of antiferromagnetic Heusler alloys are then described. Both structural and magnetic characterisations on an atomic scale are shown. Atomic ordering in the Heusler alloy films is indirectly measured by the temperature dependence of electrical resistivity. Antiferromagnetic configurations are directly imaged by X-ray magnetic linear dichroism and polarised neutron reflection. The applications of the antiferromagnetic Heusler alloy films are also explained. The other non-magnetic Heusler alloys are listed. A brief summary is provided at the end of this review.

9.
J Vis Exp ; (161)2020 07 09.
Article in English | MEDLINE | ID: mdl-32716392

ABSTRACT

The development of transgenic invertebrate preparations in which the activity of specifiable sets of neurons can be recorded and manipulated with light represents a revolutionary advance for studies of the neural basis of behavior. However, a downside of this development is its tendency to focus investigators on a very small number of "designer" organisms (e.g., C. elegans and Drosophila), potentially negatively impacting the pursuit of comparative studies across many species, which is needed for identifying general principles of network function. The present article illustrates how optical recording with voltage-sensitive dyes in the brains of non-transgenic gastropod species can be used to rapidly (i.e., within the time course of single experiments) reveal features of the functional organization of their neural networks with single-cell resolution. We outline in detail the dissection, staining, and recording methods used by our laboratory to obtain action potential traces from dozens to ~150 neurons during behaviorally relevant motor programs in the CNS of multiple gastropod species, including one new to neuroscience - the nudibranch Berghia stephanieae. Imaging is performed with absorbance voltage-sensitive dyes and a 464-element photodiode array that samples at 1,600 frames/second, fast enough to capture all action potentials generated by the recorded neurons. Multiple several-minute recordings can be obtained per preparation with little to no signal bleaching or phototoxicity. The raw optical data collected through the methods described can subsequently be analyzed through a variety of illustrated methods. Our optical recording approach can be readily used to probe network activity in a variety of non-transgenic species, making it well suited for comparative studies of how brains generate behavior.


Subject(s)
Neurons/physiology , Optical Imaging/methods , Action Potentials/physiology , Animals , Animals, Genetically Modified , Caenorhabditis elegans , Fluorescent Dyes
12.
Mol Neurodegener ; 14(1): 7, 2019 01 22.
Article in English | MEDLINE | ID: mdl-30670054

ABSTRACT

BACKGROUND: Identifying effective strategies to prevent memory loss in AD has eluded researchers to date, and likely reflects insufficient understanding of early pathogenic mechanisms directly affecting memory encoding. As synaptic loss best correlates with memory loss in AD, refocusing efforts to identify factors driving synaptic impairments may provide the critical insight needed to advance the field. In this study, we reveal a previously undescribed cascade of events underlying pre and postsynaptic hippocampal signaling deficits linked to cognitive decline in AD. These profound alterations in synaptic plasticity, intracellular Ca2+ signaling, and network propagation are observed in 3-4 month old 3xTg-AD mice, an age which does not yet show overt histopathology or major behavioral deficits. METHODS: In this study, we examined hippocampal synaptic structure and function from the ultrastructural level to the network level using a range of techniques including electron microscopy (EM), patch clamp and field potential electrophysiology, synaptic immunolabeling, spine morphology analyses, 2-photon Ca2+ imaging, and voltage-sensitive dye-based imaging of hippocampal network function in 3-4 month old 3xTg-AD and age/background strain control mice. RESULTS: In 3xTg-AD mice, short-term plasticity at the CA1-CA3 Schaffer collateral synapse is profoundly impaired; this has broader implications for setting long-term plasticity thresholds. Alterations in spontaneous vesicle release and paired-pulse facilitation implicated presynaptic signaling abnormalities, and EM analysis revealed a reduction in the ready-releasable and reserve pools of presynaptic vesicles in CA3 terminals; this is an entirely new finding in the field. Concurrently, increased synaptically-evoked Ca2+ in CA1 spines triggered by LTP-inducing tetani is further enhanced during PTP and E-LTP epochs, and is accompanied by impaired synaptic structure and spine morphology. Notably, vesicle stores, synaptic structure and short-term plasticity are restored by normalizing intracellular Ca2+ signaling in the AD mice. CONCLUSIONS: These findings suggest the Ca2+ dyshomeostasis within synaptic compartments has an early and fundamental role in driving synaptic pathophysiology in early stages of AD, and may thus reflect a foundational disease feature driving later cognitive impairment. The overall significance is the identification of previously unidentified defects in pre and postsynaptic compartments affecting synaptic vesicle stores, synaptic plasticity, and network propagation, which directly impact memory encoding.


Subject(s)
Alzheimer Disease/pathology , Hippocampus/physiopathology , Neuronal Plasticity/physiology , Synaptic Vesicles/pathology , Alzheimer Disease/metabolism , Animals , Calcium Signaling/physiology , Disease Models, Animal , Female , Hippocampus/metabolism , Male , Mice , Synaptic Transmission/physiology , Synaptic Vesicles/metabolism
13.
Front Physiol ; 9: 730, 2018.
Article in English | MEDLINE | ID: mdl-29988540

ABSTRACT

Hallucinations - compelling perceptions of stimuli that aren't really there - occur in many psychiatric and neurological disorders, and are triggered by certain drugs of abuse. Despite their clinical importance, the neuronal mechanisms giving rise to hallucinations are poorly understood, in large part due to the absence of animal models in which they can be induced, confirmed to be endogenously generated, and objectively analyzed. In humans, amphetamine (AMPH) and related psychostimulants taken in large or repeated doses can induce hallucinations. Here we present evidence for such phenomena in the marine mollusk Tritonia diomedea. Animals injected with AMPH were found to sporadically launch spontaneous escape swims in the absence of eliciting stimuli. Deafferented isolated brains exposed to AMPH, where real stimuli could play no role, generated sporadic, spontaneous swim motor programs. A neurophysiological search of the swim network traced the origin of these drug-induced spontaneous motor programs to spontaneous bursts of firing in the S-cells, the CNS afferent neurons that normally inform the animal of skin contact with its predators and trigger the animal's escape swim. Further investigation identified AMPH-induced enhanced excitability and plateau potential properties in the S-cells. Taken together, these observations support an argument that Tritonia's spontaneous AMPH-induced swims are triggered by false perceptions of predator contact - i.e., hallucinations-and illuminate potential cellular mechanisms for such phenomena.

14.
J Neurophysiol ; 120(4): 1461-1471, 2018 10 01.
Article in English | MEDLINE | ID: mdl-29873611

ABSTRACT

The pedal ganglion of the nudibranch gastropod Tritonia diomedea has been the focus of neurophysiological studies for more than 50 yr. These investigations have examined the neural basis of behaviors as diverse as swimming, crawling, reflex withdrawals, orientation to water flow, orientation to the earth's magnetic field, and learning. Despite this sustained research focus, most studies have confined themselves to the layer of neurons that are visible on the ganglion surface, leaving many neurons, which reside in deeper layers, largely unknown and thus unstudied. To facilitate work on such neurons, the present study used serial-section light microscopy to generate a detailed pictorial atlas of the pedal ganglion. One pedal ganglion was sectioned horizontally at 2-µm intervals and another vertically at 5-µm intervals. The resulting images were examined separately or combined into stacks to generate movie tours through the ganglion. These were also used to generate 3D reconstructions of individual neurons and rotating movies of digitally desheathed whole ganglia to reveal all surface neurons. A complete neuron count of the horizontally sectioned ganglion yielded 1,885 neurons. Real and virtual sections from the image stacks were used to reveal the morphology of individual neurons, as well as the major axon bundles traveling within the ganglion to and between its several nerves and connectives. Extensive supplemental data are provided, as well as a link to the Dryad Data Repository site, where the complete sets of high-resolution serial-section images can be downloaded. NEW & NOTEWORTHY Because of the large size and relatively low numbers of their neurons, gastropod mollusks are widely used for investigations of the neural basis of behavior. Most studies, however, focus on the neurons visible on the ganglion surface, leaving the majority, located out of sight below the surface, unexamined. The present light microscopy study generates the first detailed visual atlas of all neurons of the highly studied Tritonia pedal ganglion.


Subject(s)
Ganglia, Invertebrate/cytology , Neurons/cytology , Tritonia Sea Slug/cytology , Animals , Imaging, Three-Dimensional
15.
Materials (Basel) ; 11(1)2018 Jan 11.
Article in English | MEDLINE | ID: mdl-29324709

ABSTRACT

For the sustainable development of spintronic devices, a half-metallic ferromagnetic film needs to be developed as a spin source with exhibiting 100% spin polarisation at its Fermi level at room temperature. One of the most promising candidates for such a film is a Heusler-alloy film, which has already been proven to achieve the half-metallicity in the bulk region of the film. The Heusler alloys have predominantly cubic crystalline structures with small magnetocrystalline anisotropy. In order to use these alloys in perpendicularly magnetised devices, which are advantageous over in-plane devices due to their scalability, lattice distortion is required by introducing atomic substitution and interfacial lattice mismatch. In this review, recent development in perpendicularly-magnetised Heusler-alloy films is overviewed and their magnetoresistive junctions are discussed. Especially, focus is given to binary Heusler alloys by replacing the second element in the ternary Heusler alloys with the third one, e.g., MnGa and MnGe, and to interfacially-induced anisotropy by attaching oxides and metals with different lattice constants to the Heusler alloys. These alloys can improve the performance of spintronic devices with higher recording capacity.

16.
Elife ; 62017 08 07.
Article in English | MEDLINE | ID: mdl-28780929

ABSTRACT

The joint activity of neural populations is high dimensional and complex. One strategy for reaching a tractable understanding of circuit function is to seek the simplest dynamical system that can account for the population activity. By imaging Aplysia's pedal ganglion during fictive locomotion, here we show that its population-wide activity arises from a low-dimensional spiral attractor. Evoking locomotion moved the population into a low-dimensional, periodic, decaying orbit - a spiral - in which it behaved as a true attractor, converging to the same orbit when evoked, and returning to that orbit after transient perturbation. We found the same attractor in every preparation, and could predict motor output directly from its orbit, yet individual neurons' participation changed across consecutive locomotion bouts. From these results, we propose that only the low-dimensional dynamics for movement control, and not the high-dimensional population activity, are consistent within and between nervous systems.


Subject(s)
Aplysia/physiology , Models, Neurological , Motor Neurons/physiology , Nerve Net/physiology , Action Potentials , Animals , Aplysia/cytology , Brain/physiology , Locomotion , Periodicity
17.
Phys Rev Lett ; 117(23): 231601, 2016 Dec 02.
Article in English | MEDLINE | ID: mdl-27982632

ABSTRACT

The decay rates of quasistable states in quantum field theories are usually calculated using instanton methods. Standard derivations of these methods rely in a crucial way upon deformations and analytic continuations of the physical potential and on the saddle-point approximation. While the resulting procedure can be checked against other semiclassical approaches in some one-dimensional cases, it is challenging to trace the role of the relevant physical scales, and any intuitive handle on the precision of the approximations involved is at best obscure. In this Letter, we use a physical definition of the tunneling probability to derive a formula for the decay rate in both quantum mechanics and quantum field theory directly from the Minkowski path integral, without reference to unphysical deformations of the potential. There are numerous benefits to this approach, from nonperturbative applications to precision calculations and aesthetic simplicity.

18.
Commun Integr Biol ; 9(5): e1212142, 2016.
Article in English | MEDLINE | ID: mdl-28003862

ABSTRACT

Studies of the mechanisms underlying memory formation have largely focused on the synapse. However, recent evidence suggests that additional, non-synaptic, mechanisms also play important roles in this process. We recently described a novel memory mechanism whereby a particular class of neurons was recruited into the Tritonia escape swim network with sensitization, a non-associative form of learning. Neurons that in the naïve state were loosely-affiliated with the network were rapidly recruited in, transitioning from variably bursting (VB) to reliably bursting (RB). Even after the memory had faded some new neurons remained, and some original members had left, leaving the network in an altered state. Further, we identified a candidate cellular mechanism underlying these network changes. Our study supports the view that brain networks may have surprisingly fluid functional structures and adds to the growing body of evidence that non-synaptic mechanisms often operate synergistically with changes at the synapse to mediate memory formation.

19.
Curr Biol ; 25(22): 2879-88, 2015 Nov 16.
Article in English | MEDLINE | ID: mdl-26549261

ABSTRACT

Prior studies have found that functional networks can rapidly add neurons as they build short-term memories, yet little is known about the principles underlying this process. Using voltage-sensitive dye imaging, we found that short-term sensitization of Tritonia's swim motor program involves rapid expansion of the number of participating neurons. Tracking neurons across trials revealed that this involves the conversion of recently discovered variably participating neurons to reliable status. Further, we identify a candidate serotonergic cellular mechanism mediating this process. Our findings reveal a new mechanism for memory formation, involving recruitment of pre-positioned, variably committed neurons into memory networks. This represents a shift from the field's long-term focus on synaptic plasticity, toward a view that certain neurons have characteristics that predispose them to join networks with learning.


Subject(s)
Tritonia Sea Slug/physiology , Animals , Learning/physiology , Memory, Short-Term/physiology , Neuronal Plasticity/physiology , Neurons/physiology
20.
Neuron ; 86(1): 304-18, 2015 Apr 08.
Article in English | MEDLINE | ID: mdl-25819612

ABSTRACT

The neural substrates of motor programs are only well understood for small, dedicated circuits. Here we investigate how a motor program is constructed within a large network. We imaged populations of neurons in the Aplysia pedal ganglion during execution of a locomotion motor program. We found that the program was built from a very small number of dynamical building blocks, including both neural ensembles and low-dimensional rotational dynamics. These map onto physically discrete regions of the ganglion, so that the motor program has a corresponding modular organization in both dynamical and physical space. Using this dynamic map, we identify the population potentially implementing the rhythmic pattern generator and find that its activity physically traces a looped trajectory, recapitulating its low-dimensional rotational dynamics. Our results suggest that, even in simple invertebrates, neural motor programs are implemented by large, distributed networks containing multiple dynamical systems.


Subject(s)
Brain/physiology , Locomotion/physiology , Models, Neurological , Motor Neurons/physiology , Nerve Net/physiology , Nonlinear Dynamics , Action Potentials/physiology , Animals , Aplysia , Brain Mapping
SELECTION OF CITATIONS
SEARCH DETAIL
...