Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Molecules ; 25(7)2020 Apr 10.
Article in English | MEDLINE | ID: mdl-32290261

ABSTRACT

The human gamma-herpesviruses Epstein-Barr virus (EBV) (HHV-4) and Kaposi's sarcoma-associated herpesvirus (KSHV) (HHV-8) are responsible for a number of diseases, including various types of cancer. Epstein-Barr nuclear antigen 1 (EBNA1) from EBV and latency-associated nuclear antigen (LANA) from KSHV are viral-encoded DNA-binding proteins that are essential for the replication and maintenance of their respective viral genomes during latent, oncogenic infection. As such, EBNA1 and LANA are attractive targets for the development of small-molecule inhibitors. To this end, we performed a biophysical screen of EBNA1 and LANA using a fragment library by saturation transfer difference (STD)-NMR spectroscopy and surface plasmon resonance (SPR). We identified and validated a number of unique fragment hits that bind to EBNA1 or LANA. We also determined the high-resolution crystal structure of one fragment bound to EBNA1. Results from this screening cascade provide new chemical starting points for the further development of potent inhibitors for this class of viral proteins.


Subject(s)
Antigens, Viral/chemistry , DNA, Viral/chemistry , DNA-Binding Proteins/chemistry , Drug Discovery , Epstein-Barr Virus Nuclear Antigens/chemistry , Nuclear Proteins/chemistry , Antigens, Viral/metabolism , DNA, Viral/metabolism , DNA-Binding Proteins/metabolism , Drug Discovery/methods , Epstein-Barr Virus Nuclear Antigens/metabolism , Gammapapillomavirus , Herpesvirus 4, Human , Herpesvirus 8, Human/metabolism , Humans , Ligands , Magnetic Resonance Spectroscopy , Models, Molecular , Nuclear Proteins/metabolism , Small Molecule Libraries , Structure-Activity Relationship
2.
J Immunother Cancer ; 7(1): 280, 2019 10 29.
Article in English | MEDLINE | ID: mdl-31665084

ABSTRACT

BACKGROUND: The treatment of endometrial cancer (EC), the most common gynecological cancer, is currently hampered by the toxicity of current cytotoxic agents, meaning novel therapeutic approaches are urgently required. METHODS: A cohort of 161 patients was evaluated for the expression of the receptor for advanced glycation end products (RAGE) in endometrial tissues. The present study also incorporates a variety of in vitro methodologies within multiple cell lines to evaluate RAGE expression and antibody-drug conjugate efficacy, internalisation and intercellular trafficking. Additionally, we undertook in vivo bio-distribution and toxicity evaluation to determine the suitability of our chosen therapeutic approach, together with efficacy studies in a mouse xenograft model of disease. RESULTS: We have identified an association between over-expression of the receptor for advanced glycation end products (RAGE) and EC (H-score = Healthy: 0.46, SD 0.26; Type I EC: 2.67, SD 1.39; Type II EC: 2.20, SD 1.34; ANOVA, p < 0.0001). Furthermore, increased expression was negatively correlated with patient survival (Spearman's Rank Order Correlation: ρ = - 0.3914, p < 0.05). To exploit this association, we developed novel RAGE-targeting antibody drug conjugates (ADC) and demonstrated the efficacy of this approach. RAGE-targeting ADCs were up to 100-fold more efficacious in EC cells compared to non-malignant cells and up to 200-fold more cytotoxic than drug treatment alone. Additionally, RAGE-targeting ADCs were not toxic in an in vivo pre-clinical mouse model, and significantly reduced tumour growth in a xenograft mouse model of disease. CONCLUSIONS: These data, together with important design considerations implied by the present study, suggest RAGE-ADCs could be translated to novel therapeutics for EC patients.


Subject(s)
Antineoplastic Agents, Immunological/therapeutic use , Endometrial Neoplasms/drug therapy , Endometrial Neoplasms/metabolism , Immunoconjugates/therapeutic use , Receptor for Advanced Glycation End Products/antagonists & inhibitors , Aged , Animals , Antibody-Dependent Cell Cytotoxicity , Antineoplastic Agents, Immunological/administration & dosage , Antineoplastic Agents, Immunological/adverse effects , Antineoplastic Agents, Immunological/pharmacokinetics , Biomarkers , Biomarkers, Tumor , Cell Line, Tumor , Disease Models, Animal , Endometrial Neoplasms/mortality , Endometrial Neoplasms/pathology , Female , Gene Expression , Humans , Immunoconjugates/administration & dosage , Immunoconjugates/adverse effects , Immunoconjugates/pharmacokinetics , Immunohistochemistry , Mice , Middle Aged , Receptor for Advanced Glycation End Products/genetics , Receptor for Advanced Glycation End Products/metabolism , Tissue Distribution , Xenograft Model Antitumor Assays
3.
Antibodies (Basel) ; 8(1)2019 Jan 07.
Article in English | MEDLINE | ID: mdl-31544813

ABSTRACT

Antibodies, antibody-like molecules, and therapeutics incorporating antibodies as a targeting moiety, such as antibody-drug conjugates, offer significant potential for the development of highly efficacious drugs against a wide range of disorders. Despite some success, truly harnessing the superior targeting properties of these molecules requires a platform from which to effectively identify the best candidates for drug development. To streamline the development of antibody-drug conjugates targeting gynecological cancers within our laboratory, we incorporated surface plasmon resonance analysis (Biacore™ T200) into our development toolkit. Antibodies, selected based on positive ELISA screens as suitable for development as antibody-drug conjugates, were evaluated using surface plasmon resonance to determine a wide range of characteristics including specificity, kinetics/affinity, the effect of linker binding, the impact of the drug to antibody ratio, and the effect of endosomal pH on antibody-antigen binding. Analysis revealed important kinetics data and information regarding the effect of conjugation and endosomal pH on our antibody candidates that correlated with cell toxicity and antibody internalization data. As well as explaining observations from cell-based assays regarding antibody-drug conjugate efficacies, these data also provide important information regarding intelligent antibody selection and antibody-drug conjugate design. This study demonstrates the application of surface plasmon resonance technology as a platform, where detailed information can be obtained, supporting the requirements for rapid and high-throughput screening that will enable enhanced antibody-drug conjugate development.

4.
J Pharm Anal ; 8(2): 138-146, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29736301

ABSTRACT

Surface plasmon resonance (SPR) systems are widely used for detailed characterization of antibody activities including antigen and Fc-receptor binding. During the later stages of development, where the focus is to ensure that established critical quality attributes (CQAs) are maintained during cell culture, purification and formulation processes, analysis is simplified, and relative potencies are often determined. Here, simulation of binding data revealed that relative potency values, determined via parallel line analysis (PLA) and half maximal effective concentration (EC50) analysis accurately reflect changes in active concentration only if binding kinetics remain unchanged. Changes in the association rate constant shifted dose response curves, and therefore relative potencies, in the same way as changes in analyte concentration do. However, for interactions characterized by stable binding, changes in the dissociation rate constant did not result in any shift, suggesting that this type of change may go unnoticed in the dose response curve. Thus, EC50 and PLA analyses of dose response curves obtained with an anti-TNF-α antibody were complemented with the Biacore functionality for sensorgram comparison analysis, whereby changes in antigen and Fc-receptor binding profiles could be detected. Next, analysis of temperature stressed TNF-α antibody revealed that calibration free concentration analysis (CFCA) data correlated perfectly with relative potency values. Together, these results demonstrate that combinations of SPR based dose response curves, sensorgram comparison and CFCA can be used to strengthen the confidence in relative potency assessments, and suggest that SPR can potentially be used as a surrogate potency assay in the quality control of biotherapeutic medicines.

5.
Mol Cell Proteomics ; 16(10): 1770-1788, 2017 10.
Article in English | MEDLINE | ID: mdl-28576848

ABSTRACT

Fc gamma receptors (FcγR) bind the Fc region of antibodies and therefore play a prominent role in antibody-dependent cell-based immune responses such as ADCC, CDC and ADCP. The immune effector cell activity is directly linked to a productive molecular engagement of FcγRs where both the protein and glycan moiety of antibody and receptor can affect the interaction and in the present study we focus on the role of the FcγR glycans in this interaction. We provide a complete description of the glycan composition of Chinese hamster ovary (CHO) expressed human Fcγ receptors RI (CD64), RIIaArg131/His131 (CD32a), RIIb (CD32b) and RIIIaPhe158/Val158 (CD16a) and analyze the role of the glycans in the binding mechanism with IgG. The interactions of the monoclonal antibody rituximab with each FcγR were characterized and we discuss the CHO-FcγRIIIaPhe158/Val158 and CHO-FcγRI interactions and compare them to the equivalent interactions with human (HEK293) and murine (NS0) produced receptors. Our results reveal clear differences in the binding profiles of rituximab, which we attribute in each case to the differences in host cell-dependent FcγR glycosylation. The glycan profiles of CHO expressed FcγRI and FcγRIIIaPhe158/Val158 were compared with the glycan profiles of the receptors expressed in NS0 and HEK293 cells and we show that the glycan type and abundance differs significantly between the receptors and that these glycan differences lead to the observed differences in the respective FcγR binding patterns with rituximab. Oligomannose structures are prevalent on FcγRI from each source and likely contribute to the high affinity rituximab interaction through a stabilization effect. On FcγRI and FcγRIIIa large and sialylated glycans have a negative impact on rituximab binding, likely through destabilization of the interaction. In conclusion, the data show that the IgG1-FcγR binding kinetics differ depending on the glycosylation of the FcγR and further support a stabilizing role of FcγR glycans in the antibody binding interaction.


Subject(s)
Polysaccharides/immunology , Receptors, IgG/immunology , Rituximab/immunology , Animals , CHO Cells/metabolism , Cell Line , Cricetulus/immunology , Glycosylation , HEK293 Cells , Humans , Immunity, Cellular , Kinetics , Mice , Polysaccharides/metabolism , Protein Binding , Receptors, IgG/metabolism , Rituximab/metabolism
6.
Anal Biochem ; 502: 53-63, 2016 Jun 01.
Article in English | MEDLINE | ID: mdl-27019155

ABSTRACT

Label-free technologies, such as surface plasmon resonance, are typically used for characterization of protein interactions and in screening for selection of antibodies or small molecules with preferred binding properties. In characterization, complete binding curves are normally fitted to defined interaction models to provide affinity and rate constants, whereas report points indicative of binding and stability of binding are often used for analysis of screening data. As an alternative to these procedures, here we describe how the analysis, in certain cases, can be simplified by comparison with upper and lower limit binding curves that represent expected or wanted binding profiles. The use of such profiles is applied to the analysis of kinetically complex IgG-Fc receptor interactions and for selection of antibody candidates. The comparison procedure described may be particularly useful in batch-to-batch comparisons and in comparability and biosimilar studies of biotherapeutic medicines. In screening, more informed selections may become possible as entire binding profiles and not a few report points are used in the analysis and as each new sample is directly compared with a predefined outcome.


Subject(s)
Protein Interaction Mapping , Surface Plasmon Resonance , Antibodies/analysis , Binding Sites , Protein Binding , Small Molecule Libraries/analysis
7.
Anal Biochem ; 477: 1-9, 2015 May 15.
Article in English | MEDLINE | ID: mdl-25700863

ABSTRACT

Quantitation of protein is essential during pharmaceutical development, and a variety of methods and technologies for determination of total and specific protein concentration are available. Here we describe the development of a streamlined assay platform for specific quantitation assays using surface plasmon resonance (SPR) technology. A total of nine different assays were developed using similar conditions, of which eight assays were for quantitation of different human blood plasma proteins (IgG, IgG1-4 subclasses, IgA, transferrin, and albumin) from a chromatography-based IgG plasma process. Lastly, an assay for monitoring the concentration of a recombinant monoclonal antibody during 13 days of CHO cell culturing was developed. Assay performances were compared with enzyme-linked immunosorbent assay (ELISA), nephelometry, ARCHITECT, and Cobas c501. SPR assays were shown to have higher sensitivity than analysis using nephelometry, ARCHITECT, and Cobas and to have significantly lower analysis and hands-on time compared with ELISA. Furthermore, the SPR assays were robust enough to be used for up to 12 days, allowing specific protein concentration measurement of a sample to be completed at line within 10 min. Using the same platform with only few varied parameters between different assays has saved time in the lab as well as for evaluation and presentation of results.


Subject(s)
Blood Proteins/analysis , Surface Plasmon Resonance/methods , Animals , Antibodies, Immobilized/chemistry , Antibodies, Immobilized/immunology , Antibodies, Monoclonal/analysis , Blood Proteins/immunology , CHO Cells , Cricetinae , Cricetulus , Humans
8.
J Proteome Res ; 13(12): 5471-85, 2014 Dec 05.
Article in English | MEDLINE | ID: mdl-25345863

ABSTRACT

FcγRs play a critical role in the immune response following recognition of invading particles and tumor associated antigens by circulating antibodies. In the present study we investigated the role of FcγR glycosylation in the IgG interaction and observed a stabilizing role for receptor N-glycans. We performed a complete glycan analysis of the recombinant FcγRs (FcγRIa, FcγRIIa, FcγRIIb, FcγRIIIa(Phe158/Val158), and FcγRIIIb) expressed in human cells and demonstrate that receptor glycosylation is complex and varied between receptors. We used surface plasmon resonance to establish binding patterns between rituximab and all receptors. Complex binding was observed for FcγRIa and FcγRIIIa. The IgG-FcγR interaction was further investigated using a combination of kinetic experiments and enzymatically deglycosylated FcγRIa and FcγRIIIa(Phe158/Val158) receptors in an attempt to determine the underlying binding mechanism. We observed that antibody binding levels decreased for deglycosylated receptors, and at the same time, binding kinetics were altered and showed a more rapid approach to steady state, followed by an increase in the antibody dissociation rate. Binding of rituximab to deglycosylated FcγRIIIa(Phe158) was now consistent with a 1:1 binding mechanism, while binding of rituximab to FcγRIIIa(Val158) remained heterogeneous. Kinetic data support a complex binding mechanism, involving heterogeneity in both antibody and receptor, where fucosylated and afucosylated antibody forms compete in receptor binding and in receptor molecules where heterogeneity in receptor glycosylation plays an important role. The exact nature of receptor glycans involved in IgG binding remains unclear and determination of rate and affinity constants are challenging. Here, the use of more extended competition experiments appear promising and suggest that it may be possible to determine dissociation rate constants for high affinity afucosylated antibodies without the need to purify or express such variants. The data described provide further insight into the complexity of the IgG-FcγR interaction and the influence of FcγR glycosylation.


Subject(s)
Immunoglobulin G/metabolism , Receptors, IgG/metabolism , Antibodies, Monoclonal, Murine-Derived/metabolism , Chromatography, High Pressure Liquid , Electrophoresis, Polyacrylamide Gel , GPI-Linked Proteins/genetics , GPI-Linked Proteins/metabolism , Glycosylation , HEK293 Cells , Humans , Kinetics , Mutation , Polysaccharides/metabolism , Protein Binding , Receptors, IgG/genetics , Recombinant Proteins/metabolism , Rituximab , Surface Plasmon Resonance , Tandem Mass Spectrometry
9.
Methods Mol Biol ; 1008: 139-65, 2013.
Article in English | MEDLINE | ID: mdl-23729252

ABSTRACT

Surface plasmon resonance (SPR) biosensor technology has become an important tool for drug discovery and basic research. SPR instruments are used for a wide variety of applications including determining the binding kinetics and affinity of an interaction, specificity studies, screening, assay development as well as concentration measurements. The interacting molecules may be proteins, peptides, lipids, viruses, nucleic acids, or small organic molecules such as fragments or drug candidates. The ease with which real time information can be obtained has changed many customer workflows in both antibody and small molecule/fragment interaction analysis, from label based and affinity/IC50 based workflows towards a label free and kinetic based workflow. This chapter focuses on applications for drug discovery, and outlines the experimental design for screening and selection of small molecules from a focused library. Also, determination of kinetics and/or affinity constants of selected ligands, using established SPR methodology is described, together with potential issues during assay development, running of the assay, and results interpretation.


Subject(s)
Biotin/chemistry , Immobilized Proteins/chemistry , Recombinant Fusion Proteins/chemistry , Small Molecule Libraries/chemistry , Streptavidin/chemistry , Biological Assay , Drug Discovery , Kinetics , Ligands , Protein Binding , Surface Plasmon Resonance , Thermodynamics
10.
Nat Biotechnol ; 30(3): 283-8, 2012 Feb 19.
Article in English | MEDLINE | ID: mdl-22343925

ABSTRACT

Inhibitors of poly-ADP-ribose polymerase (PARP) family proteins are currently in clinical trials as cancer therapeutics, yet the specificity of many of these compounds is unknown. Here we evaluated a series of 185 small-molecule inhibitors, including research reagents and compounds being tested clinically, for the ability to bind to the catalytic domains of 13 of the 17 human PARP family members including the tankyrases, TNKS1 and TNKS2. Many of the best-known inhibitors, including TIQ-A, 6(5H)-phenanthridinone, olaparib, ABT-888 and rucaparib, bound to several PARP family members, suggesting that these molecules lack specificity and have promiscuous inhibitory activity. We also determined X-ray crystal structures for five TNKS2 ligand complexes and four PARP14 ligand complexes. In addition to showing that the majority of PARP inhibitors bind multiple targets, these results provide insight into the design of new inhibitors.


Subject(s)
Enzyme Inhibitors/chemistry , Poly(ADP-ribose) Polymerase Inhibitors , Tankyrases/antagonists & inhibitors , Amino Acid Sequence , Binding Sites , Catalytic Domain/drug effects , Computer Simulation , Crystallography, X-Ray , Enzyme Inhibitors/pharmacology , Humans , Poly(ADP-ribose) Polymerases/metabolism , Protein Structure, Tertiary , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Tankyrases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...