Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
Chemphyschem ; 25(7): e202300721, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38446052

ABSTRACT

Our study aims to examine the impact of ligand functionalization on the ammonia adsorption properties of MOFs and COFs, by combining multi-scale calculations with machine learning techniques. Density Functional Theory calculations were performed to investigate the interactions between ammonia (NH3) and a comprehensive set of 48 strategically chosen functional groups. In all of the cases, it is observed that functionalized rings exhibit a stronger interaction with ammonia molecule compared to unfunctionalized benzene, while -O2Mg demonstrates the highest interaction energy with ammonia (15 times stronger than the bare benzene). The trend obtained from the thorough DFT screening is verified via Grand Canonical Monte-Carlo calculations by employing interatomic potentials derived from quantum chemical calculations. Isosteric heat of adsorption plots provide a comprehensive elucidation of the adsorption process, and important insights can be taken for studies in fine-tuning materials for ammonia adsorption. Furthermore, a proof of concept machine learning (ML) analysis is conducted, which demonstrates that ML can accurately predict NH3 binding energies despite the limited amount of data. The findings derived from our multi-scale methodology indicate that the functionalization strategy can be utilized to guide synthesis towards MOFs, COFs, or other porous materials for enhanced NH3 adsorption capacity.

2.
Sci Rep ; 14(1): 2242, 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38278851

ABSTRACT

Intrinsic properties of metal-organic frameworks (MOFs), such as their ultra porosity and high surface area, deem them promising solutions for problems involving gas adsorption. Nevertheless, due to their combinatorial nature, a huge number of structures is feasible which renders cumbersome the selection of the best candidates with traditional techniques. Recently, machine learning approaches have emerged as efficient tools to deal with this challenge, by allowing researchers to rapidly screen large databases of MOFs via predictive models. The performance of the latter is tightly tied to the mathematical representation of a material, thus necessitating the use of informative descriptors. In this work, a generalized framework to predict gaseous adsorption properties is presented, using as one and only descriptor the capstone of chemical information: the potential energy surface (PES). In order to be machine understandable, the PES is voxelized and subsequently a 3D convolutional neural network (CNN) is exploited to process this 3D energy image. As a proof of concept, the proposed pipeline is applied on predicting [Formula: see text] uptake in MOFs. The resulting model outperforms a conventional model built with geometric descriptors and requires two orders of magnitude less training data to reach a given level of performance. Moreover, the transferability of the approach to different host-guest systems is demonstrated, examining [Formula: see text] uptake in COFs. The generic character of the proposed methodology, inherited from the PES, renders it applicable to fields other than reticular chemistry.

3.
Chemistry ; 30(1): e202301630, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-37581254

ABSTRACT

Controlled delivery of target molecules is required in many medical and chemical applications. For such purposes, metal-organic frameworks (MOFs), which possess desirable features such as high porosity, large surface area, and adjustable functionalities, hold great potential as drug carriers. Herein, Quercetin (QU), as an anticancer drug, was loaded on Cu2 (BDC)2 (DABCO) and Cu2 (F4 BDC)2 )DABCO) MOFs (BDC=1,4-benzenedicarboxylate and DABCO=1,4-diazabicyclo[2.2.2]octane). As these Cu-MOFs have a high surface area, an appropriate pore size, and biocompatible ingredients, they can be utilized to deliver QU. The loading efficiency of QU in these MOFs was 49.5 % and 41.3 %, respectively. The drug-loaded compounds displayed sustained drug release over 15 days, remarkably high drug loading capacities and pH-controlled release behavior. The prepared nanostructures were characterized by different characterization technics including FT-IR, PXRD, ZP, TEM, FE-SEM, UV-vis, and BET. In addition, MTT assays were carried out on the HEK-293 and HeLa cell lines to investigate cytotoxicity. Cellular apoptosis analysis was performed to investigate the cell death mechanisms. Grand Canonical Monte Carlo simulations were conducted to analyze the interactions between MOFs and QU. Moreover, the stability of MOFs was also investigated during and after the drug release process. Ultimately, kinetic models of drug release were evaluated.


Subject(s)
Metal-Organic Frameworks , Humans , Metal-Organic Frameworks/chemistry , Quercetin , HeLa Cells , Spectroscopy, Fourier Transform Infrared , HEK293 Cells , Drug Carriers/toxicity , Drug Carriers/chemistry , Hydrogen-Ion Concentration
4.
ACS Appl Energy Mater ; 6(13): 7250-7257, 2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37448980

ABSTRACT

Ca- and Mg-based batteries represent a more sustainable alternative to Li-ion batteries. However, multivalent cation technologies suffer from poor cation mass transport. In addition, the development of positive electrodes enabling reversible charge storage currently represents one of the major challenges. Organic positive electrodes, in addition to being the most sustainable and potentially low-cost candidates, compared with their inorganic counterparts, currently present the best electrochemical performances in Ca and Mg cells. Unfortunately, organic positive electrodes suffer from relatively low capacity retention upon cycling, the origin of which is not yet fully understood. Here, 1,4,5,8-naphthalenetetracarboxylic dianhydride-derived polyimide was tested in Li, Na, Mg, and Ca cells for the sake of comparison in terms of redox potential, gravimetric capacities, capacity retention, and rate capability. The redox mechanisms were also investigated by means of operando IR experiments, and a parameter affecting most figures of merit has been identified: the presence of contact ion-pairs in the electrolyte.

5.
Molecules ; 28(7)2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37049885

ABSTRACT

In the present work, we used DFT in order to study the interaction of SO2 with 41 strategically functionalized benzenes that can be incorporated in MOF linkers. The interaction energy of phenyl phosphonic acid (-PO3H2) with SO2 was determined to be the strongest (-10.1 kcal/mol), which is about 2.5 times greater than the binding energy with unfunctionalized benzene (-4.1 kcal/mol). To better understand the nature of SO2 interactions with functionalized benzenes, electron redistribution density maps of the relevant complexes with SO2 were created. In addition, three of the top performing functional groups were selected (-PO3H2, -CNH2NOH, -OSO3H) to modify the IRMOF-8 organic linker and calculate its SO2 adsorption capacity with Grand Canonical Monte Carlo (GCMC) simulations. Our results showed a great increase in the absolute volumetric uptake at low pressures, indicating that the suggested functionalization technique can be used to enhance the SO2 uptake capability not only in MOFs but in a variety of porous materials.

6.
Inorg Chem ; 62(14): 5496-5504, 2023 Apr 10.
Article in English | MEDLINE | ID: mdl-36976265

ABSTRACT

We utilized the etb platform of MOFs for the synthesis of two new water-stable compounds based on amide functionalized trigonal tritopic organic linkers H3BTBTB (L1), H3BTCTB (L2) and Al3+ metal ions, namely, Al(L1) and Al(L2). The mesoporous Al(L1) material exhibits an impressive methane (CH4) uptake at high pressures and ambient temperature. The corresponding values of 192 cm3 (STP) cm-3, 0.254 g g-1 at 100 bar, and 298 K are among the highest reported for mesoporous MOFs, while the gravimetric and volumetric working capacities (between 80 bar and 5 bar) can be well compared to the best MOFs for CH4 storage. Furthermore, at 298 K and 50 bar, Al(L1) adsorbs 50 wt % (304 cm3 (STP) cm-3) CO2, values among the best recorded for CO2 storage using porous materials. To gain insight into the mechanism accounting for the resultant enhanced CH4 storage capacity, theoretical calculations were performed, revealing the presence of strong CH4 adsorption sites near the amide groups. Our work demonstrates that amide functionalized mesoporous etb-MOFs can be valuable for the design of versatile coordination compounds with CH4 and CO2 storage capacities comparable to ultra-high surface area microporous MOFs.

7.
RSC Adv ; 12(55): 35703-35711, 2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36545114

ABSTRACT

Carbon dioxide foam injection is a promising enhanced oil recovery (EOR) method, being at the same time an efficient carbon storage technology. The strength of CO2 foam under reservoir conditions plays a crucial role in predicting the EOR and sequestration performance, yet, controlling the strength of the foam is challenging due to the complex physics of foams and their sensitivity to operational conditions and reservoir parameters. Data-driven approaches for complex fluids such as foams can be an alternative method to the time-consuming experimental and conventional modeling techniques, which often fail to accurately describe the effect of all important related parameters. In this study, machine learning (ML) models were constructed to predict the oil-free CO2 foam apparent viscosity in the bulk phase and sandstone formations. Based on previous experimental data on various operational and reservoir conditions, predictive models were developed by employing six ML algorithms. Among the applied algorithms, neural network algorithms provided the most precise predictions for bulk and porous media. The established models were then used to compute the critical foam quality under different conditions and determine the maximum apparent foam viscosity, effectively controlling CO2 mobility to co-optimize EOR and CO2 sequestration.

8.
Molecules ; 27(11)2022 May 26.
Article in English | MEDLINE | ID: mdl-35684386

ABSTRACT

The interaction strength of nitrogen dioxide (NO2) with a set of 43 functionalized benzene molecules was investigated by performing density functional theory (DFT) calculations. The functional groups under study were strategically selected as potential modifications of the organic linker of existing metal-organic frameworks (MOFs) in order to enhance their uptake of NO2 molecules. Among the functional groups considered, the highest interaction energy with NO2 (5.4 kcal/mol) was found for phenyl hydrogen sulfate (-OSO3H) at the RI-DSD-BLYP/def2-TZVPP level of theory-an interaction almost three times larger than the corresponding binding energy for non-functionalized benzene (2.0 kcal/mol). The groups with the strongest NO2 interactions (-OSO3H, -PO3H2, -OPO3H2) were selected for functionalizing the linker of IRMOF-8 and investigating the trend in their NO2 uptake capacities with grand canonical Monte Carlo (GCMC) simulations at ambient temperature for a wide pressure range. The predicted isotherms show a profound enhancement of the NO2 uptake with the introduction of the strongly-binding functional groups in the framework, rendering them promising modification candidates for improving the NO2 uptake performance not only in MOFs but also in various other porous materials.

9.
Molecules ; 27(9)2022 Apr 19.
Article in English | MEDLINE | ID: mdl-35565965

ABSTRACT

Water adsorption in metal-organic frameworks has gained a lot of scientific attention recently due to the potential to be used in adsorption-based water capture. Functionalization of their organic linkers can tune water adsorption properties by increasing the hydrophilicity, thus altering the shape of the water adsorption isotherms and the overall water uptake. In this work, a large set of functional groups is screened for their interaction with water using ab initio calculations. The functional groups with the highest water affinities form two hydrogen bonds with the water molecule, acting as H-bond donor and H-bond acceptor simultaneously. Notably, the highest binding energy was calculated to be -12.7 Kcal/mol for the -OSO3H group at the RI-MP2/def2-TZVPP-level of theory, which is three times larger than the reference value. Subsequently, the effect of the functionalization strategy on the water uptake is examined on a selected set of functionalized MOF-74-III by performing Monte Carlo simulations. It was found that the specific groups can increase the hydrophilicity of the MOF and enhance the water uptake with respect to the parent MOF-74-III for relative humidity (RH) values up to 30%. The saturation water uptake exceeded 800 cm3/cm3 for all candidates, classifying them among the top performing materials for water harvesting.


Subject(s)
Metal-Organic Frameworks , Adsorption , Metal-Organic Frameworks/chemistry , Monte Carlo Method , Water/chemistry
10.
J Am Chem Soc ; 142(8): 3814-3822, 2020 02 26.
Article in English | MEDLINE | ID: mdl-32017547

ABSTRACT

Application of machine learning (ML) methods for the determination of the gas adsorption capacities of nanomaterials, such as metal-organic frameworks (MOF), has been extensively investigated over the past few years as a computationally efficient alternative to time-consuming and computationally demanding molecular simulations. Depending on the thermodynamic conditions and the adsorbed gas, ML has been found to provide very accurate results. In this work, we go one step further and we introduce chemical intuition in our descriptors by using the "type" of the atoms in the structure, instead of the previously used building blocks, to account for the chemical character of the MOF. ML predictions for the methane and carbon dioxide adsorption capacities of several tens of thousands of hypothetical MOFs are evaluated at various thermodynamic conditions using the random forest algorithm. For all cases examined, the use of atom types instead of building blocks leads to significantly more accurate predictions, while the number of MOFs needed for the training of the ML algorithm in order to achieve a specified accuracy can be reduced by an order of magnitude. More importantly, since practically there are an unlimited number of building blocks that materials can be made of but a limited number of atom types, the proposed approach is more general and can be considered as universal. The universality and transferability was proved by predicting the adsorption properties of a completely different family of materials after the training of the ML algorithm in MOFs.

11.
ACS Appl Mater Interfaces ; 9(51): 44560-44566, 2017 Dec 27.
Article in English | MEDLINE | ID: mdl-29215862

ABSTRACT

In recent years, the design and discovery of new metal-organic framework (MOF) platforms with distinct structural features and tunable chemical composition has remarkably enhanced by applying reticular chemistry rules and the molecular building block (MBB) approach. We targeted the synthesis of new rare earth (RE)-MOF platforms based on a rectangular-shaped 4-c linker, acting as a rigid organic MBB. Accordingly, we designed and synthesized the organic ligand 1,2,4,5-tetrakis(4-carboxyphenyl)-3,6-dimethyl-benzene (H4L), in which the two methyl groups attached to the central phenyl ring lock the four peripheral carboxyphenyl groups to an orthogonal/vertical position. We report here a new family of RE-MOFs featuring the novel inorganic building unit, RE4(µ3-O)2 (RE: Y3+, Tb3+, Dy3+, Ho3+, Er3+, and Yb3+), with planar D2h symmetry. The rigid 4-c linker, H4L, directs the in situ assembly of the unique 8-c RE4(µ3-O)2(COO)8 cluster, resulting in the formation of the first (4, 8)-c RE-MOFs with csq topology, RE-csq-MOF-1. The structures of the yttrium (Y-csq-MOF-1) and holmium (Ho-csq-MOF-1) analogues were determined by single-crystal X-ray diffraction analysis. Y-csq-MOF-1 was successfully activated and tested for Xe/Kr separation. The results show that Y-csq-MOF-1 has high isosteric heat of adsorption for Xe (33.8 kJ mol-1), with high Xe/Kr selectivity (IAST 12.1, Henry 12.9) and good Xe uptake (1.94 mmol g-1 at 298 K and 1 bar), placing this MOF among the top-performing adsorbents for Xe/Kr separation.

12.
J Mater Chem B ; 5(18): 3277-3282, 2017 May 14.
Article in English | MEDLINE | ID: mdl-32264393

ABSTRACT

A multiscale computational study is reported that investigates the microscopic behavior of the anti-cancer drug gemcitabine (GEM) stored in metal organic frameworks IRMOF-74-III and the functionalized OH-IRMOF-74-III. Accurate Quantum Mechanics calculations indicate that the GEM-MOF interaction energy in both host structures is suitable for drug adsorption and delivery with a slow release. Based on Grand-Canonical Monte Carlo simulations, the predicted maximum loading of GEM is three-fold greater than in lipid-coated mesoporous silica nanoparticles and similar to liposome nanocarriers. Finally, Molecular Dynamics simulations reveal slow diffusion of GEM inside the pores of both hosts, which is crucial for the controlled release of GEM. This work unravels the energetics and dynamics of GEM in MOFs and highlights the ability of the biocompatible (OH)-IRMOF-74-III to be used as a promising nano encapsulator for GEM delivery.

13.
J Colloid Interface Sci ; 442: 49-59, 2015 Mar 15.
Article in English | MEDLINE | ID: mdl-25514647

ABSTRACT

In this study, an alternative use of Sevelamer carbonate (SEV, a cross-linked polyallylamine which is a widely known pharmaceutical compound) was suggested. The existence of primary and secondary amino groups (with different ratios) in its molecule increases its adsorption potential and use as biosorbent material. SEV was tested as biosorbent material aiming the removal of heavy metals and dyes from simulated effluents. As heavy metals and dyes, hexavalent chromium (Cr(VI)) and Remazol Brilliant Blue RN (RB) were used, respectively. A full adsorption study was done confirming the strong adsorption capability of SEV. The maximum theoretical adsorption capacity (Qm) was 772 and 485mg/g for single-component solutions of RB and Cr(VI), respectively; the respective values for binary mixtures of the same concentration (200mg/L) were 445 and 309mg/g respectively (calculated after fitting to Langmuir-Freundlich isotherm model at 25°C). The same experiments were also done at increasing temperatures (45 and 65°C) concluding thermodynamic remarks (ΔH(0)>0; ΔG(0)<0; ΔS(0)>0). The effect of contact time was analyzed running kinetic adsorption experiments and fitting them to pseudo-second order kinetic equation. The reusability was evaluated completing successfully 20 cycles of reuse (adsorption/desorption). The adsorption mechanism among SEV molecules and Cr(VI) or/and RB was clarified using FTIR spectroscopy before and after adsorption in line with a detailed theoretical modeling which provided important calculations. SEV was also characterized using swelling experiments, BET, SEM, XRD, TGA techniques.


Subject(s)
Chromium/isolation & purification , Coloring Agents/isolation & purification , Metals, Heavy/isolation & purification , Polyamines/chemistry , Sevelamer/chemistry , Water Pollutants, Chemical/isolation & purification , Adsorption , Hydrogen-Ion Concentration , Kinetics , Temperature , Thermodynamics , Water Purification/methods
14.
Chemphyschem ; 15(5): 905-11, 2014 Apr 04.
Article in English | MEDLINE | ID: mdl-24615861

ABSTRACT

The interaction of carbon dioxide with a series of functionalized aromatic molecules was studied by using quantum mechanical methods (MP2), to examine the effect of the substituent on the adsorption of CO2 . Several different initial configurations of CO2 were taken into account for each functionalized benzene to locate the energetically most favorable configuration. To get a better estimation of the binding energies, we applied an extrapolation scheme to approach the complete basis set. CH2 N3 -, COOH-, and SO3 H-functionalized benzenes were found to have the strongest interaction with CO2 , and the corresponding binding energies were calculated to be -3.62, -3.65, and -4.3 kcal mol(-1) , respectively. Electrostatic potential maps of the functionalized benzenes and electron redistribution density plots of the complexes were also created to get a better insight into the nature of the interaction of CO2 with the functionalized benzenes. The functional groups that were examined can be potentially incorporated in organic bridging molecules that connect the inorganic corners in MOF.

15.
Inorg Chem ; 53(2): 679-81, 2014 Jan 21.
Article in English | MEDLINE | ID: mdl-24368056

ABSTRACT

The sulfone-functionalized Zr- and Hf-UiO-67 metal-organic frameworks with hierarchical mesopores were successfully synthesized using the ligand 4,4'-dibenzoic acid-2,2'-sulfone, with acetic acid or HCl as the modulator. Compared to UiO-67, the zirconium solid shows a remarkable 122% increase in CO2 uptake, reaching 4.8 mmol g(-1) (17.4 wt %) at 1 bar and 273 K (145% at 298 K) and more than 100% increase in CO2/CH4 selectivity.

16.
Phys Chem Chem Phys ; 16(3): 876-9, 2014 Jan 21.
Article in English | MEDLINE | ID: mdl-24284834

ABSTRACT

The separation of an equimolar CO2-N2 mixture in a 3D porous carbon nanotube network has been investigated. An enhanced CO2 adsorption selectivity has been observed. The diffusion coefficients of the adsorbed molecules have been related to their residence dynamics in the vicinity of the carbon atoms of the nanopore.

17.
Mol Pharm ; 9(10): 2856-62, 2012 Oct 01.
Article in English | MEDLINE | ID: mdl-22845012

ABSTRACT

This work reports details pertaining to the formation of chitosan nanoparticles that we prepare by the ionic gelation method. The molecular interactions of the ionic cross-linking of chitosan with tripolyphosphate have been investigated and elucidated by means of all-electron density functional theory. Solvent effects have been taken into account using implicit models. We have identified primary-interaction ionic cross-linking configurations that we define as H-link, T-link, and M-link, and we have quantified the corresponding interaction energies. H-links, which display high interaction energies and are also spatially broadly accessible, are the most probable cross-linking configurations. At close range, proton transfer has been identified, with maximum interaction energies ranging from 12.3 up to 68.3 kcal/mol depending on the protonation of the tripolyphosphate polyanion and the relative coordination of chitosan with tripolyphosphate. On the basis of our results for the linking types (interaction energies and torsion bias), we propose a simple mechanism for their impact on the chitosan/TPP nanoparticle formation process. We introduce the ß ratio, which is derived from the commonly used α ratio but is more fundamental since it additionally takes into account structural details of the oligomers.


Subject(s)
Chitosan/chemistry , Cross-Linking Reagents/chemistry , Gels/chemistry , Models, Chemical , Nanoparticles/chemistry , Polyphosphates/chemistry , Hydrogen-Ion Concentration , Ions/chemistry , Models, Molecular , Particle Size
18.
Chem Commun (Camb) ; 47(28): 7933-43, 2011 Jul 28.
Article in English | MEDLINE | ID: mdl-21528146

ABSTRACT

In this feature article, the atomic-scale understanding of the hydrogen spillover mechanism for hydrogen storage in metal-doped carbon materials and metal-organic frameworks is discussed by critically assessing recent computational and experimental studies. It is argued that the spillover mechanism involves: (a) the generation and desorption of mobile H atoms on the metal nanoparticles (b) the diffusion of H atoms in weakly-bound states on the support (c) the sticking and immobilization of H atoms at preferential locations of the receptor where barriers to sticking are decreased, and, (d) the Eley-Rideal recombination of the adsorbed H atoms with diffusing mobile H atoms to form H(2). The implications and open questions on the mechanism and effectiveness of hydrogen storage by spillover are critically assessed.

19.
Nanoscale ; 3(3): 856-69, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21218227

ABSTRACT

The quest for efficient hydrogen storage materials has been the limiting step towards the commercialization of hydrogen as an energy carrier and has attracted a lot of attention from the scientific community. Sophisticated multi-scale theoretical techniques have been considered as a valuable tool for the prediction of materials storage properties. Such techniques have also been used for the investigation of hydrogen storage in a novel category of porous materials known as Covalent Organic Frameworks (COFs). These framework materials are consisted of light elements and are characterized by exceptional physicochemical properties such as large surface areas and pore volumes. Combinations of ab initio, Molecular Dynamics (MD) and Grand Canonical Monte-Carlo (GCMC) calculations have been performed to investigate the hydrogen adsorption in these ultra-light materials. The purpose of the present review is to summarize the theoretical hydrogen storage studies that have been published after the discovery of COFs. Experimental and theoretical studies have proven that COFs have comparable or better hydrogen storage abilities than other competitive materials such as MOF. The key factors that can lead to the improvement of the hydrogen storage properties of COFs are highlighted, accompanied with some recently presented theoretical multi-scale studies concerning these factors.


Subject(s)
Hydrogen/chemistry , Hydrogen/isolation & purification , Models, Chemical , Organic Chemicals/chemistry , Organic Chemicals/isolation & purification , Absorption , Computer Simulation
20.
Nanoscale ; 3(3): 933-6, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21218229

ABSTRACT

A lightweight, oxygen-rich carbon foam was prepared and doped with Pd/Hg alloy nanoparticles. The composite revealed high H2 sorption capacity (5 wt%) at room temperature and moderate pressure (2 MPa). The results were explained on the basis of the H2 spillover mechanism using Density Functional Theory.


Subject(s)
Carbon/chemistry , Hydrogen/chemistry , Hydrogen/isolation & purification , Mercury/chemistry , Models, Chemical , Nanostructures/chemistry , Palladium/chemistry , Absorption , Computer Simulation , Gases/chemistry , Nanostructures/ultrastructure , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL
...