Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Monit Assess ; 195(3): 417, 2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36807829

ABSTRACT

Anthropogenic activities are increasing the atmospheric carbon dioxide (CO2); around a third of the CO2 emitted by these activities has been taken up by the ocean. Nevertheless, this marine ecosystem service of regulation remains largely invisible to society, and not enough is known about regional differences and trends in sea-air CO2 fluxes (FCO2), especially in the Southern Hemisphere. The objectives of this work were as follows: first to put values of FCO2 integrated over the exclusive economic zones (EEZ) of five Latin-American countries (Argentina, Brazil, Mexico, Peru, and Venezuela) into perspective regarding total country-level greenhouse gases (GHG) emissions. Second, to assess the variability of two main biological factors affecting FCO2 at marine ecological time series (METS) in these areas. FCO2 over the EEZs were estimated using the NEMO model, and GHG emissions were taken from reports to the UN Framework Convention on Climate Change. For each METS, the variability in phytoplankton biomass (indexed by chlorophyll-a concentration, Chla) and abundance of different cell sizes (phy-size) were analyzed at two time periods (2000-2015 and 2007-2015). Estimates of FCO2 at the analyzed EEZs showed high variability among each other and non-negligible values in the context of greenhouse gas emissions. The trends observed at the METS indicated, in some cases, an increase in Chla (e.g., EPEA-Argentina) and a decrease in others (e.g., IMARPE-Peru). Evidence of increasing populations of small size-phytoplankton was observed (e.g., EPEA-Argentina, Ensenada-Mexico), which would affect the carbon export to the deep ocean. These results highlight the relevance of ocean health and its ecosystem service of regulation when discussing carbon net emissions and budgets.


Subject(s)
Ecosystem , Greenhouse Gases , Carbon Dioxide/analysis , Latin America , Climate Change , Environmental Monitoring/methods , Greenhouse Gases/analysis , Methane/analysis
2.
Appl Opt ; 60(23): 6978-6988, 2021 Aug 10.
Article in English | MEDLINE | ID: mdl-34613181

ABSTRACT

In this study, we identify a seasonal bias in the ocean color satellite-derived remote sensing reflectances (Rrs(λ);sr-1) at the ocean color validation site, Marine Optical BuoY. The seasonal bias in Rrs(λ) is present to varying degrees in all ocean color satellites examined, including the Visible Infrared Imaging Radiometer Suite, Sea-Viewing Wide Field-of-View Sensor, and Moderate Resolution Imaging Spectrometer. The relative bias in Rrs has spectral dependence. Products derived from Rrs(λ) are affected by the bias to varying degrees, with particulate backscattering varying up to 50% over a year, chlorophyll varying up to 25% over a year, and absorption from phytoplankton or dissolved material varying by up to 15%. The propagation of Rrs(λ) bias into derived products is broadly confirmed on regional and global scales using Argo floats and data from the cloud-aerosol lidar with orthogonal polarization instrument aboard the cloud-aerosol lidar and infrared pathfinder satellite. The artifactual seasonality in ocean color is prominent in areas of low biomass (i.e., subtropical gyres) and is not easily discerned in areas of high biomass. While we have eliminated several candidates that could cause the biases in Rrs(λ), there are still outstanding questions regarding potential contributions from atmospheric corrections. Specifically, we provide evidence that the aquatic bidirectional reflectance distribution function may in part cause the observed seasonal bias, but this does not preclude an additional effect of the aerosol estimation. Our investigation highlights the contributions that atmospheric correction schemes can make in introducing biases in Rrs(λ), and we recommend more simulations to discern these influence Rrs(λ) biases. Community efforts are needed to find the root cause of the seasonal bias because all past, present, and future data are, or will be, affected until a solution is implemented.

3.
Science ; 291(5513): 2594-7, 2001 Mar 30.
Article in English | MEDLINE | ID: mdl-11283369

ABSTRACT

The Sea-viewing Wide Field-of-view Sensor (SeaWiFS) provides global monthly measurements of both oceanic phytoplankton chlorophyll biomass and light harvesting by land plants. These measurements allowed the comparison of simultaneous ocean and land net primary production (NPP) responses to a major El Niño to La Niña transition. Between September 1997 and August 2000, biospheric NPP varied by 6 petagrams of carbon per year (from 111 to 117 petagrams of carbon per year). Increases in ocean NPP were pronounced in tropical regions where El Niño-Southern Oscillation (ENSO) impacts on upwelling and nutrient availability were greatest. Globally, land NPP did not exhibit a clear ENSO response, although regional changes were substantial.


Subject(s)
Biomass , Chlorophyll/analysis , Climate , Photosynthesis , Phytoplankton/metabolism , Plants/metabolism , Light , Oceans and Seas , Phytoplankton/growth & development , Plant Development , Seasons , Seawater , Spacecraft
4.
Appl Opt ; 38(18): 3844-56, 1999 Jun 20.
Article in English | MEDLINE | ID: mdl-18319991

ABSTRACT

Reflected skylight in above-water measurements of diffuse marine reflectance can be reduced substantially by viewing the surface through an analyzer transmitting the vertically polarized component of incident radiance. For maximum reduction of effects, radiometric measurements should be made at a viewing zenith angle of approximately 45 degrees (near the Brewster angle) and a relative azimuth angle between solar and viewing directions greater than 90 degrees (backscattering), preferably 135 degrees. In this case the residual reflected skylight in the polarized signal exhibits minimum sensitivity to the sea state and can be corrected to within a few 10(-4) in reflectance units. For most oceanic waters the resulting relative error on the diffuse marine reflectance in the blue and green is less than 1%. Since the water body polarizes incident skylight, the measured polarized reflectance differs from the total reflectance. The difference, however, is small for the considered geometry. Measurements made at the Scripps Institution of Oceanography pier in La Jolla, Calif., with a specifically designed scanning polarization radiometer, confirm the theoretical findings and demonstrate the usefulness of polarization radiometry for measuring diffuse marine reflectance.

SELECTION OF CITATIONS
SEARCH DETAIL
...