Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Brain ; 146(12): 4903-4915, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37551444

ABSTRACT

Disinhibition during early stages of Alzheimer's disease is postulated to cause network dysfunction and hyperexcitability leading to cognitive deficits. However, the underlying molecular mechanism remains unknown. Here we show that, in mouse lines carrying Alzheimer's disease-related mutations, a loss of neuronal membrane potassium-chloride cotransporter KCC2, responsible for maintaining the robustness of GABAA-mediated inhibition, occurs pre-symptomatically in the hippocampus and prefrontal cortex. KCC2 downregulation was inversely correlated with the age-dependent increase in amyloid-ß 42 (Aß42). Acute administration of Aß42 caused a downregulation of membrane KCC2. Loss of KCC2 resulted in impaired chloride homeostasis. Preventing the decrease in KCC2 using long term treatment with CLP290 protected against deterioration of learning and cortical hyperactivity. In addition, restoring KCC2, using short term CLP290 treatment, following the transporter reduction effectively reversed spatial memory deficits and social dysfunction, linking chloride dysregulation with Alzheimer's disease-related cognitive decline. These results reveal KCC2 hypofunction as a viable target for treatment of Alzheimer's disease-related cognitive decline; they confirm target engagement, where the therapeutic intervention takes place, and its effectiveness.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Symporters , Mice , Animals , Alzheimer Disease/complications , Alzheimer Disease/genetics , Chlorides , Amyloid beta-Peptides/metabolism , Cognitive Dysfunction/genetics , Symporters/genetics , Mutation/genetics , Disease Models, Animal
2.
PLoS One ; 15(5): e0233439, 2020.
Article in English | MEDLINE | ID: mdl-32469934

ABSTRACT

In epithelial cells, the cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-regulated Cl- channel, plays a key role in water and electrolytes secretion. A dysfunctional CFTR leads to the dehydration of the external environment of the cells and to the production of viscous mucus in the airways of cystic fibrosis patients. Here, we applied the quadriwave lateral shearing interferometry (QWLSI), a quantitative phase imaging technique based on the measurement of the light wave shift when passing through a living sample, to study water transport regulation in human airway epithelial CFBE and CHO cells expressing wild-type, G551D- and F508del-CFTR. We were able to detect phase variations during osmotic challenges and confirmed that cellular volume changes reflecting water fluxes can be detected with QWLSI. Forskolin stimulation activated a phase increase in all CFBE and CHO cell types. This phase variation was due to cellular volume decrease and intracellular refractive index increase and was completely blocked by mercury, suggesting an activation of a cAMP-dependent water efflux mediated by an endogenous aquaporin (AQP). AQP3 mRNAs, not AQP1, AQP4 and AQP5 mRNAs, were detected by RT-PCR in CFBE cells. Readdressing the F508del-CFTR protein to the cell surface with VX-809 increased the detected water efflux in CHO but not in CFBE cells. However, VX-770, a potentiator of CFTR function, failed to further increase the water flux in either G551D-CFTR or VX-809-corrected F508del-CFTR expressing cells. Our results show that QWLSI could be a suitable technique to study water transport in living cells. We identified a CFTR and cAMP-dependent, mercury-sensitive water transport in airway epithelial and CHO cells that might be due to AQP3. This water transport appears to be affected when CFTR is mutated and independent of the chloride channel function of CFTR.


Subject(s)
Aquaporin 3/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Respiratory Mucosa/metabolism , Water/metabolism , Aminophenols/pharmacology , Animals , Aquaporin 3/genetics , Biological Transport, Active/drug effects , Biophysical Phenomena , Bronchi/cytology , Bronchi/metabolism , CHO Cells , Cell Line , Chloride Channel Agonists/pharmacology , Colforsin/pharmacology , Cricetulus , Cystic Fibrosis/drug therapy , Cystic Fibrosis/genetics , Cystic Fibrosis/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Epithelial Cells/metabolism , Humans , Microscopy, Interference , Mutant Proteins/genetics , Mutant Proteins/metabolism , Osmosis , Quinolones/pharmacology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Respiratory Mucosa/cytology
3.
Eur J Med Chem ; 190: 112116, 2020 Mar 15.
Article in English | MEDLINE | ID: mdl-32078860

ABSTRACT

Recent evidence shows that combination of correctors and potentiators, such as the drug ivacaftor (VX-770), can significantly restore the functional expression of mutated Cystic Fibrosis Transmembrane conductance Regulator (CFTR), an anion channel which is mutated in cystic fibrosis (CF). The success of these combinatorial therapies highlights the necessity of identifying a broad panel of specific binding mode modulators, occupying several distinct binding sites at structural level. Here, we identified two small molecules, SBC040 and SBC219, which are two efficient cAMP-independent potentiators, acting at low concentration of forskolin with EC50 close to 1 µM and in a synergic way with the drug VX-770 on several CFTR mutants of classes II and III. Molecular dynamics simulations suggested potential SBC binding sites at the vicinity of ATP-binding sites, distinct from those currently proposed for VX-770, outlining SBC molecules as members of a new family of potentiators.


Subject(s)
Benzamides/pharmacology , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Purines/pharmacology , Aminophenols/pharmacology , Benzamides/chemical synthesis , Benzamides/metabolism , Binding Sites , Cystic Fibrosis Transmembrane Conductance Regulator/chemistry , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Drug Synergism , HeLa Cells , Humans , Molecular Docking Simulation , Mutation , Protein Binding , Purines/chemical synthesis , Purines/metabolism , Quinolones/pharmacology
4.
Sci Rep ; 9(1): 13729, 2019 09 24.
Article in English | MEDLINE | ID: mdl-31551433

ABSTRACT

Loss-of-function mutations in the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) channel in human airway epithelial cells are responsible for Cystic Fibrosis. A deleterious impact of physiological temperature on CFTR plasma membrane expression, residence and channel activity is characteristic of the most common and severe CF mutation, F508del. Using primary human F508del-airway epithelial cells and CF bronchial epithelial CFBE41o- cell lines expressing F508del- or WT-CFTR, we examined the effects of temperature (29 °C-39 °C) on the amplitude and stability of short-circuit CFTR-dependent currents over time and the efficiency of pharmacological strategies to stably restore F508del-CFTR function. We show that F508del-CFTR functional instability at 37 °C is not prevented by low temperature or VX-809 correction, genistein and VX-770 potentiators, nor by the combination VX-809/VX-770. Moreover, F508del-CFTR-dependent currents 30 minutes after CFTR activation at 37 °C did not significantly differ whether a potentiator was used or not. We demonstrate that F508del-CFTR function loss is aggravated at temperatures above 37 °C while limited by a small decrease of temperature and show that the more F508del-CFTR is stimulated, the faster the current loss happens. Our study highlights the existence of a temperature-dependent process inhibiting the function of F508del-CFTR, possibly explaining the low efficacy of pharmacological drugs in clinic.


Subject(s)
Bronchi/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Epithelial Cells/metabolism , Cell Line , Cystic Fibrosis/genetics , Cystic Fibrosis/metabolism , Humans , Mutation/genetics , Thermal Conductivity
5.
Sci Rep ; 8(1): 8858, 2018 06 11.
Article in English | MEDLINE | ID: mdl-29891970

ABSTRACT

Corticofugal fibers target the subthalamic nucleus (STN), a component nucleus of the basal ganglia, in addition to the striatum, their main input. The cortico-subthalamic, or hyperdirect, pathway, is thought to supplement the cortico-striatal pathways in order to interrupt/change planned actions. To explore the previously unknown properties of the neurons that project to the STN, retrograde and anterograde tools were used to specifically identify them in the motor cortex and selectively stimulate their synapses in the STN. The cortico-subthalamic neurons exhibited very little sag and fired an initial doublet followed by non-adapting action potentials. In the STN, AMPA/kainate synaptic currents had a voltage-dependent conductance, indicative of GluA2-lacking receptors and were partly inhibited by Naspm. AMPA transmission displayed short-term depression, with the exception of a limited bandpass in the 5 to 15 Hz range. AMPA synaptic currents were negatively controlled by dopamine D5 receptors. The reduction in synaptic strength was due to postsynaptic D5 receptors, mediated by a PKA-dependent pathway, but did not involve a modified rectification index. Our data indicated that dopamine, through post-synaptic D5 receptors, limited the cortical drive onto STN neurons in the normal brain.


Subject(s)
Dopamine/metabolism , Motor Cortex/metabolism , Neurons/metabolism , Receptors, Dopamine D5/physiology , Subthalamic Nucleus/metabolism , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/metabolism , Animals , Corpus Striatum/metabolism , Kainic Acid/metabolism , Mice, Inbred C57BL , Neural Pathways , Neurons/cytology , Synapses/metabolism , Synaptic Transmission
6.
Front Pharmacol ; 8: 195, 2017.
Article in English | MEDLINE | ID: mdl-28439239

ABSTRACT

The chloride (Cl-) channel cystic fibrosis transmembrane conductance regulator (CFTR) is defective in cystic fibrosis (CF), and mutation of its encoding gene leads to various defects such as retention of the misfolded protein in the endoplasmic reticulum, reduced stability at the plasma membrane, abnormal channel gating with low open probability, and thermal instability, which leads to inactivation of the channel at physiological temperature. Pharmacotherapy is one major therapeutic approach in the CF field and needs sensible and fast tools to identify promising compounds. The high throughput screening assays available are often fast and sensible techniques but with lack of specificity. Few works used automated patch clamp (APC) for CFTR recording, and none have compared conventional and planar techniques and demonstrated their capabilities for different types of experiments. In this study, we evaluated the use of planar parallel APC technique for pharmacological search of CFTR-trafficking correctors and CFTR function modulators. Using optimized conditions, we recorded both wt- and corrected F508del-CFTR Cl- currents with automated whole-cell patch clamp and compared the data to results obtained with conventional manual whole-cell patch clamp. We found no significant difference in patch clamp parameters such as cell capacitance and series resistance between automated and manual patch clamp. Also, the results showed good similarities of CFTR currents recording between the two methods. We showed that similar stimulation protocols could be used in both manual and automatic techniques allowing precise control of temperature, classic I/V relationship, and monitoring of current stability in time. In conclusion, parallel patch-clamp recording allows rapid and efficient investigation of CFTR currents with a variety of tests available and could be considered as new tool for medium throughput screening in CF pharmacotherapy.

7.
J Neurosci ; 33(37): 14840-9, 2013 Sep 11.
Article in English | MEDLINE | ID: mdl-24027284

ABSTRACT

Burst firing has been reported as a pathological activity of subthalamic nucleus (STN) neurons in Parkinson's disease. However, the origin of bursts and their causal link with motor deficits remain unknown. Here we tested the hypothesis that dopamine D5 receptors (D5Rs), characterized by a high constitutive activity, may contribute to the emergence of burst firing in STN. We tested whether inhibiting D5R constitutive activity depresses burst firing and alleviates motor impairments in the 6-OHDA rat model of Parkinson's disease. Intrasubthalamic microinjections of either an inverse agonist of D5Rs, flupenthixol, or a D2R antagonist, raclopride, were applied. Behavioral experiments, in vivo and in vitro electrophysiological recordings, and ex vivo functional neuroanatomy studies were performed. Using [(5)S]GTPγ binding autoradiography, we show that application of flupenthixol inhibits D5R constitutive activity within the STN. Furthermore, flupenthixol reduced evoked burst in brain slices and converted pathological burst firing into physiological tonic, single-spike firing in 6-OHDA rats in vivo. This later action was mimicked by calciseptine, a Cav1 channel blocker. Moreover, the same treatment dramatically attenuated motor impairment in this model and normalized metabolic hyperactivity in both STN and substantia nigra pars reticulata, the main output structure of basal ganglia in rats. In contrast, raclopride as well as saline did not reverse burst firing and motor deficits, confirming the selective action of flupenthixol on D5Rs. These results are the first to demonstrate that subthalamic D5Rs are involved in the pathophysiology of Parkinson's disease and that administering an inverse agonist of these receptors may lessen motor symptoms.


Subject(s)
Dopamine Antagonists/therapeutic use , Flupenthixol/therapeutic use , Locomotion/physiology , Parkinson Disease/drug therapy , Receptors, Dopamine D5/metabolism , Subthalamic Nucleus/metabolism , Action Potentials/drug effects , Animals , Animals, Newborn , Disease Models, Animal , Dopamine Agonists/pharmacology , Dopamine Antagonists/pharmacology , Dose-Response Relationship, Drug , Female , Flupenthixol/pharmacology , In Vitro Techniques , Locomotion/drug effects , Male , Neurons/drug effects , Oxidopamine/toxicity , Parkinson Disease/etiology , Raclopride/pharmacology , Rats , Rats, Wistar , Statistics, Nonparametric , Subthalamic Nucleus/drug effects , Subthalamic Nucleus/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...