Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 22(10): 4000-4005, 2022 May 25.
Article in English | MEDLINE | ID: mdl-35576455

ABSTRACT

Perpendicular shape anisotropy (PSA) offers a practical solution to downscale spin-transfer torque magnetoresistive random-access memory (STT-MRAM) beyond the sub-20 nm technology node while retaining thermal stability. However, our understanding of the thermomagnetic behavior of PSA-STT-MRAM is often indirect, relying on magnetoresistance measurements and micromagnetic modeling. Here, the magnetism of a NiFe PSA-STT-MRAM nanopillar is investigated using off-axis electron holography, providing spatially resolved magnetic information as a function of temperature. Magnetic induction maps reveal the micromagnetic configuration of the NiFe storage layer (∼60 nm high, ≤20 nm diameter), confirming the PSA induced by its 3:1 aspect ratio. In situ heating demonstrates that the PSA of the storage layer is maintained up to at least 250 °C, and direct quantitative measurements reveal a moderate decrease of magnetic induction. Hence, this study shows explicitly that PSA provides significant stability in STT-MRAM applications that require reliable performance over a range of operating temperatures.

2.
Nano Lett ; 19(12): 8716-8723, 2019 12 11.
Article in English | MEDLINE | ID: mdl-31664840

ABSTRACT

Spintronics, which is the basis of a low-power, beyond-CMOS technology for computational and memory devices, remains up to now entirely based on critical materials such as Co, heavy metals and rare-earths. Here, we show that Mn4N, a rare-earth free ferrimagnet made of abundant elements, is an exciting candidate for the development of sustainable spintronics devices. Mn4N thin films grown epitaxially on SrTiO3 substrates possess remarkable properties, such as a perpendicular magnetization, a very high extraordinary Hall angle (2%) and smooth domain walls at the millimeter scale. Moreover, domain walls can be moved at record speeds by spin-polarized currents, in absence of spin-orbit torques. This can be explained by the large efficiency of the adiabatic spin transfer torque, due to the conjunction of a reduced magnetization and a large spin polarization. Finally, we show that the application of gate voltages through the SrTiO3 substrates allows modulating the Mn4N coercive field with a large efficiency.

4.
Nanotechnology ; 28(6): 065709, 2017 Feb 10.
Article in English | MEDLINE | ID: mdl-28067207

ABSTRACT

Segmented magnetic nanowires are a promising route for the development of three dimensional data storage techniques. Such devices require a control of the coercive field and the coupling mechanisms between individual magnetic elements. In our study, we investigate electrodeposited nanomagnets within host templates using vibrating sample magnetometry and observe a strong dependence between nanowire length and coercive field (25 nm-5 µm) and diameter (25-45 nm). A transition from a magnetization reversal through coherent rotation to domain wall propagation is observed at an aspect ratio of approximately 2. Our results are further reinforced via micromagnetic simulations and angle dependent hysteresis loops. The found behavior is exploited to create nanowires consisting of a fixed and a free segment in a spin-valve like structure. The wires are released from the membrane and electrically contacted, displaying a giant magnetoresistance effect that is attributed to individual switching of the coupled nanomagnets. We develop a simple analytical model to describe the observed switching phenomena and to predict stable and unstable regimes in coupled nanomagnets of certain geometries.

5.
Ultramicroscopy ; 115: 26-34, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22459115

ABSTRACT

A micromagnetic study of epitaxial micron-sized iron dots is reported through the analysis of Fresnel contrast in Lorentz Microscopy. Their use is reviewed and developed through analysis of various magnetic structures in such dots. Simple Landau configuration is used to investigate various aspects of asymmetric Bloch domain walls. The experimental width of such a complex wall is first derived and its value is discussed with the help of micromagnetic simulations. Combination of these two approaches enables us to define what is really extracted when estimating asymmetric wall width in Lorentz Microscopy. Moreover, quantitative data on the magnetization inside the dot is retrieved using phase retrieval as well as new information on the degrees of freedom of such walls. Finally, it is shown how the existence and the propagation of a surface vortex can be characterized and monitored. This demonstrates the ability to reach a magnetic sensitivity a priori hidden in Fresnel contrast, based on an original image treatment and backed-up by the evaluation of contrasts obtained from micromagnetic simulations.

6.
Science ; 300(5624): 1416-9, 2003 May 30.
Article in English | MEDLINE | ID: mdl-12775836

ABSTRACT

One challenge in the production of nanometer-sized objects with given properties is to control their growth at a macroscopic scale in situ and in real time. A dedicated ultrahigh-vacuum grazing-incidence small-angle x-ray scattering setup has been developed, yielding high sensitivity and dynamics. Its capabilities to derive the average particle shape and size and the film growth mode and ordering and to probe both surfaces and buried interfaces are illustrated for two prototypical cases: the model catalyst Pd/MgO(100) and the self-organized Co/Au(111) system. A wide range of technologically important systems can potentially be investigated in various gaseous environments.

SELECTION OF CITATIONS
SEARCH DETAIL
...