Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 298(9): 102317, 2022 09.
Article in English | MEDLINE | ID: mdl-35926706

ABSTRACT

The Na+,K+-ATPase generates electrochemical gradients of Na+ and K+ across the plasma membrane via a functional cycle that includes various phosphoenzyme intermediates. However, the structure and function of these intermediates and how metal fluorides mimick them require further investigation. Here, we describe a 4.0 Å resolution crystal structure and functional properties of the pig kidney Na+,K+-ATPase stabilized by the inhibitor beryllium fluoride (denoted E2-BeFx). E2-BeFx is expected to mimic properties of the E2P phosphoenzyme, yet with unknown characteristics of ion and ligand binding. The structure resembles the E2P form obtained by phosphorylation from inorganic phosphate (Pi) and stabilized by cardiotonic steroids, including a low-affinity Mg2+ site near ion binding site II. Our anomalous Fourier analysis of the crystals soaked in Rb+ (a K+ congener) followed by a low-resolution rigid-body refinement (6.9-7.5 Å) revealed preocclusion transitions leading to activation of the dephosphorylation reaction. We show that the Mg2+ location indicates a site of initial K+ recognition and acceptance upon binding to the outward-open E2P state after Na+ release. Furthermore, using binding and activity studies, we find that the BeFx-inhibited enzyme is also able to bind ADP/ATP and Na+. These results relate the E2-BeFx complex to a transient K+- and ADP-sensitive E∗P intermediate of the functional cycle of the Na+,K+-ATPase, prior to E2P.


Subject(s)
Beryllium , Cardiac Glycosides , Fluorides , Kidney , Sodium-Potassium-Exchanging ATPase , Adenosine Diphosphate/metabolism , Adenosine Triphosphate/metabolism , Animals , Beryllium/chemistry , Cardiac Glycosides/chemistry , Fluorides/chemistry , Kidney/enzymology , Kinetics , Phosphates/metabolism , Phosphorylation , Protein Domains , Sodium-Potassium-Exchanging ATPase/antagonists & inhibitors , Sodium-Potassium-Exchanging ATPase/chemistry , Swine
2.
Neurobiol Dis ; 143: 105012, 2020 09.
Article in English | MEDLINE | ID: mdl-32653672

ABSTRACT

Heterozygous mutations in the ATP1A3 gene, coding for an alpha subunit isoform (α3) of Na+/K+-ATPase, are the primary genetic cause for rapid-onset dystonia-parkinsonism (RDP) and alternating hemiplegia of childhood (AHC). Recently, cerebellar ataxia, areflexia, pes cavus, optic atrophy and sensorineural hearing loss (CAPOS), early infantile epileptic encephalopathy (EIEE), childhood rapid onset ataxia (CROA) and relapsing encephalopathy with rapid onset ataxia (RECA) extend the clinical spectrum of ATP1A3 related disorders. AHC and RDP demonstrate distinct clinical features, with AHC symptoms being generally more severe compared to RDP. Currently, it is largely unknown what determines the disease severity, and whether severity is linked to the degree of functional impairment of the α3 subunit. Here we compared the effect of twelve different RDP and AHC specific mutations on the expression and function of the α3 Na+/K+-ATPase in transfected HEK cells and oocytes. All studied mutations led to functional impairment of the pump, as reflected by lower survival rate and reduced pump current. No difference in the extent of impairment, nor in the expression level, was found between the two phenotypes, suggesting that these measures of pump dysfunction do not exclusively determine the disease severity.


Subject(s)
Dystonic Disorders/genetics , Hemiplegia/genetics , Sodium-Potassium-Exchanging ATPase/genetics , Sodium-Potassium-Exchanging ATPase/metabolism , Animals , Dystonic Disorders/metabolism , HEK293 Cells , Hemiplegia/metabolism , Humans , Mutation , Xenopus
SELECTION OF CITATIONS
SEARCH DETAIL
...