Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Waste Manag Res ; 41(7): 1267-1279, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36912470

ABSTRACT

Municipal solid waste management is a paramount activity in modern cities due to environmental, social and economic problems that can arise when mishandled. In this work, the sequencing of micro-routes in the Argentine city of Bahía Blanca is addressed, which is modelled as a vehicle routing problem with travel time limit and the vehicle's capacity. Particularly, we propose two mathematical formulations based on mixed integer programming and we solve a set of instances of the city of Bahía Blanca based on real data. Moreover, with this model, we estimate the total distance and travel time of the waste collection and use this data to analyse the possibility of installing a transfer station. The results demonstrate the competitiveness of the approach to resolve realistic instances of the target problem and suggest the convenience of installing a transfer station in the city considering the reduction of the travelled distance.


Subject(s)
Refuse Disposal , Waste Management , Refuse Disposal/methods , Waste Management/methods , Solid Waste , Cities
3.
Math Biosci Eng ; 19(6): 5546-5563, 2022 03 28.
Article in English | MEDLINE | ID: mdl-35603367

ABSTRACT

A critical factor in the logistic management of firms is the degree of efficiency of the operations in distribution centers. Of particular interest is the pick-up process, since it is the costliest operation, amounting to 50 and up to 75% of the total cost of the activities in storage facilities. In this paper we jointly address the order batching problem (OBP) and the order picking problem (OPP). The former problem amounts to find optimal batches of goods to be picked up, by restructuring incoming orders by either splitting up large orders or combining small orders into larger ones that can then be picked in a single picking tour. The OPP, in turn, involves identifying optimal sequences of visits to the storage positions in which the goods to be included in each batch are stored. We seek to design a plan that minimizes the total operational cost of the pick-up process, proportional to the displacement times around the storage area as well as to all the time spent in pick-ups and finishing up orders to be punctually delivered. Earliness or tardiness will induce inefficiency costs, be it because of the excessive use of space or breaches of contracts with customers. Tsai, Liou and Huang in 2008 have generated 2D and 3D instances. In previous works we have addressed the 2D ones, achieving very good results. Here we focus on 3D instances (the articles are placed at different levels in the storage center), which involve a higher complexity. This contributes to improve the performance of the hybrid evolutionary algorithm (HEA) applied in our previous works.


Subject(s)
Algorithms
4.
Math Biosci Eng ; 19(4): 3369-3401, 2022 Jan 25.
Article in English | MEDLINE | ID: mdl-35341256

ABSTRACT

Overlapping solutions occur when more than one solution in the space of decisions maps to the same solution in the space of objectives. This situation threatens the exploration capacity of Multi-Objective Evolutionary Algorithms (MOEAs), preventing them from having a good diversity in their population. The influence of overlapping solutions is intensified on multi-objective combinatorial problems with a low number of objectives. This paper presents a hybrid MOEA for handling overlapping solutions that combines the classic NSGA-II with a strategy based on Objective Space Division (OSD). Basically, in each generation of the algorithm, the objective space is divided into several regions using the nadir solution calculated from the current generation solutions. Furthermore, the solutions in each region are classified into non-dominated fronts using different optimization strategies in each of them. This significantly enhances the achieved diversity of the approximate front of non-dominated solutions. The proposed algorithm (called NSGA-II/OSD) is tested on a classic Operations Research problem: the Multi-Objective Knapsack Problem (0-1 MOKP) with two objectives. Classic NSGA-II, MOEA/D and Global WASF-GA are used to compare the performance of NSGA-II/OSD. In the case of MOEA/D two different versions are implemented, each of them with a different strategy for specifying the reference point. These MOEA/D reference point strategies are thoroughly studied and new insights are provided. This paper analyses in depth the impact of overlapping solutions on MOEAs, studying the number of overlapping solutions, the number of solution repairs, the hypervolume metric, the attainment surfaces and the approximation to the real Pareto front, for different sizes of 0-1 MOKPs with two objectives. The proposed method offers very good performance when compared to the classic NSGA-II, MOEA/D and Global WASF-GA algorithms, all of them well-known in the literature.

5.
J Environ Manage ; 296: 113157, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34243091

ABSTRACT

We present a study of annual forestry harvesting planning considering the risk of compaction generated by the transit of heavy forestry machinery. Soil compaction is a problem that occurs when the soil loses its natural resistance to resist the movement of machinery, causing the soil to be compacted in excess. This compaction generates unwanted effects on both the ecosystem and its economic sustainability. Therefore, when the risk of compaction is considerable, harvest operations must be stopped, complicating the annual plan and incurring in excessive costs to alleviate the situation. To incorporate the risk of compaction into the planning process, it is necessary to incorporate the analysis of the soil's hydrological balance, which combines the effect of rainfall and potential evapotranspiration. This requires analyzing the uncertainty of rainfall regimes, for which we propose a stochastic model under different scenarios. This stochastic model yields better results than the current deterministic methods used by lumber companies. Initially, the model is solved analyzing monthly scenarios. Then, we change to a biweekly model that provides a better representation of the dynamics of the system. While this improves the performance of the model, this new formulation increases the number of scenarios of the stochastic model. To address this complexity, we apply the Progressive Hedging method, which decomposes the problem in scenarios, yielding high-quality solutions in reasonable time.


Subject(s)
Forestry , Soil , Ecosystem , Trees
6.
Waste Manag Res ; 38(1_suppl): 117-129, 2020 May.
Article in English | MEDLINE | ID: mdl-31902302

ABSTRACT

The design of efficient municipal solid waste (MSW) pre-collection networks can contribute to the global efficiency and sustainability of the reverse logistic chain of MSW in modern cities. With this aim, in this paper a comprehensive methodology that involves making decisions in several stages, from waste fraction classification to the final optimization of waste bins' location, was applied in two real cases of the city of Bahía Blanca, Argentina. This city, does not have much available data about waste generation and, therefore, an important fieldwork had to be performed for applying this methodology, involving estimating population density per block and waste generation rate per inhabitant, identifying the location of commercial and institutional buildings and also estimating its generation rate, as well as performing a characterization of the MSW from similar studies in the literature and surveys performed to make decisions. The modelling of the urban characteristics was performed in a geographic information system. In the bins' location problem, a mixed-integer optimization model was applied, seeking to minimize the investment costs, given the maximum area available and the capacity of the bins. Different scenarios were analysed, considering different collection frequencies and the maximum distance to be travelled by the user.


Subject(s)
Refuse Disposal , Waste Management , Argentina , Cities , Solid Waste
SELECTION OF CITATIONS
SEARCH DETAIL
...