Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 13(3): 861-5, 2013 Mar 13.
Article in English | MEDLINE | ID: mdl-23398085

ABSTRACT

The potential for scale-up coupled with minimized system size is likely to be a major determining factor in the realization of applicable quantum information systems. Nanofabrication technology utilizing the III-V semiconductor system provides a path to scalable quantum bit (qubit) integration and a materials platform with combined electronic/photonic functionality. Here, we address the key requirement of qubit-site and emission energy control for scale-up by demonstrating uniform arrays of III-V nanowires, where each nanowire contains a single quantum dot. Optical studies of single nanowire quantum dots reveal narrow linewidth exciton and biexciton emission and clear state-filling at higher powers. Individual nanowire quantum dots are shown to emit nonclassically with clear evidence of photon antibunching. A model is developed to explain unexpectedly large excited state separations as revealed by photoluminescence emission spectra. From measurements of more than 40 nanowire quantum dots, we find emission energies with an ensemble broadening of 15 meV. The combination of deterministic site control and the narrow distribution in ensemble emission energy results in a system readily capable of scaling for multiqubit quantum information applications.

2.
Phys Rev Lett ; 98(2): 026806, 2007 Jan 12.
Article in English | MEDLINE | ID: mdl-17358634

ABSTRACT

We show that by illuminating an InGaAs/GaAs self-assembled quantum dot with circularly polarized light, the nuclei of atoms constituting the dot can be driven into a bistable regime, in which either a thresholdlike enhancement or reduction of the local nuclear field by up to 3 T can be generated by varying the pumping intensity. The excitation power threshold for such a nuclear spin "switch" is found to depend on both the external magnetic and electric fields. The switch is shown to arise from the strong feedback of the nuclear spin polarization on the dynamics of the spin transfer from electrons to the nuclei of the dot.

3.
Phys Rev Lett ; 84(4): 733-6, 2000 Jan 24.
Article in English | MEDLINE | ID: mdl-11017359

ABSTRACT

New information on the electron-hole wave functions in InAs-GaAs self-assembled quantum dots is deduced from Stark effect spectroscopy. Most unexpectedly it is shown that the hole is localized towards the top of the dot, above the electron, an alignment that is inverted relative to the predictions of all recent calculations. We are able to obtain new information on the structure and composition of buried quantum dots from modeling of the data. We also demonstrate that the excited state transitions arise from lateral quantization and that tuning through the inhomogeneous distribution of dot energies can be achieved by variation of electric field.

SELECTION OF CITATIONS
SEARCH DETAIL
...