Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 10(1): 6269, 2020 Apr 14.
Article in English | MEDLINE | ID: mdl-32286418

ABSTRACT

We demonstrate broadband and wide-angle antireflective surface nanostructuring in GaAs semiconductors using variable dose electron-beam lithography (EBL). Various designed structures are written with EBL on a positive EB-resist coated GaAs and developed followed by shallow inductively coupled plasma etching. An optimized nanostructured surface shows a reduced surface reflectivity down to less than 2.5% in the visible range of 450-700 nm and an average reflectance of less than 4% over a broad near-infrared wavelength range from 900-1400 nm. The results are obtained over a wide incidence angle of 33.3°. This study shows the potential for anti-reflective structures using a simpler reverse EBL process which can provide optical absorption or extraction efficiency enhancement in semiconductors relevant to improved performance in solar photovoltaics or light-emitting diodes.

2.
Nanotechnology ; 27(22): 225203, 2016 Jun 03.
Article in English | MEDLINE | ID: mdl-27115917

ABSTRACT

We fabricate and characterise an optical structure consisting of a photonic crystal L3 nanocavity containing two gold nanodisks placed close to a field antinode. We use finite difference time domain (FDTD) modelling to show that the optical properties of the nanocavity are sensitive to the physical separation between the gold nanodisks, and that at reduced separation, the q-factor of a cavity mode polarised parallel to the dimer long-axis is reduced, indicating coupling between the cavity mode and a localised plasmon. Preliminary experimental measurements indeed indicate a damping of the cavity mode in the presence of the dimer; a result consistent with the FDTD modelling. Such a scheme may be used to integrate plasmonic systems into all-optical photonic circuits.

3.
Nano Lett ; 12(8): 4065-9, 2012 Aug 08.
Article in English | MEDLINE | ID: mdl-22783831

ABSTRACT

Planar magnetic nanowires have been vital to the development of spintronic technology. They provide an unparalleled combination of magnetic reconfigurability, controllability, and scalability, which has helped to realize such applications as racetrack memory and novel logic gates. Microfabricated atom optics benefit from all of these properties, and we present the first demonstration of the amalgamation of spintronic technology with ultracold atoms. A magnetic interaction is exhibited through the reflection of a cloud of (87)Rb atoms at a temperature of 10 µK, from a 2 mm × 2 mm array of nanomagnetic domain walls. In turn, the incident atoms approach the array at heights of the order of 100 nm and are thus used to probe magnetic fields at this distance.

4.
ACS Nano ; 4(6): 3039-44, 2010 Jun 22.
Article in English | MEDLINE | ID: mdl-20499907

ABSTRACT

We have fabricated an L3 optical nanocavity operating at visible wavelengths that is coated with a thin-film of a fluorescent molecular-dye. The cavity was directly fabricated into a pre-etched, free-standing silicon-nitride (SiN) membrane and had a quality factor of Q = 2650. This relatively high Q-factor approaches the theoretical limit that can be expected from an L3 nanocavity using silicon nitride as a dielectric material and is achieved as a result of the solvent-free cavity-fabrication protocol that we have developed. We show that the fluorescence from a red-emitting fluorescent dye coated onto the cavity surface undergoes strong emission intensity enhancement at a series of discrete wavelengths corresponding to the cavity modes. Three dimensional finite difference time domain (FDTD) calculations are used to predict the mode structure of the cavities with excellent agreement demonstrated between theory and experiment.


Subject(s)
Fluorescent Dyes/chemistry , Models, Chemical , Nanostructures/chemistry , Nanostructures/ultrastructure , Nanotechnology/instrumentation , Organic Chemicals/chemistry , Refractometry/instrumentation , Computer Simulation , Equipment Design , Equipment Failure Analysis , Particle Size , Scattering, Radiation
5.
Nano Lett ; 5(1): 67-71, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15792414

ABSTRACT

We use e-beam lithography to pattern an indium tin oxide (ITO) electrode to create arrays of conjugated-polymer LEDs, each of which has a hole-injecting contact limited to 100 nm in diameter. Using optical microscopy, we estimate that the electroluminescence from a 100 nm diameter LED comes from a region characterized by a diameter of approximately 170 nm. This apparent broadening occurs due to current spreading within a PEDOT:PSS layer which was included to aid hole injection.

SELECTION OF CITATIONS
SEARCH DETAIL
...