Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
Phytopathology ; 112(8): 1783-1794, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35124971

ABSTRACT

Late blight disease, caused by the plant pathogen Phytophthora infestans, is one of the major threats for tomato and potato crops. Monitoring the populations of P. infestans is important to determine if there are changes in the sensitivity to fungicides and host preference. In this study, microsatellite markers and mitochondrial haplotypes were used to assess the genotype of isolates of P. infestans collected from tomato and potato plants in Colombia. Furthermore, sensitivity to the three fungicides cymoxanil (penetrant fungicide), mefenoxam, and fluopicolide (systemic fungicides), and tomato-potato host preference, were evaluated. Mitochondrial haplotyping showed that isolates collected on tomato were from the genetic groups Ia and Ib, while isolates collected on potatoes belonged to group IIa. Microsatellite analyses showed that isolates from tomato form two groups, including the Ib mitochondrial haplotype (which is genetically close to the US-1 clonal lineage) and the Ia haplotype (related to the EC-3 lineage), whereas Colombian isolates from potato formed a separate group. Furthermore, differences in sensitivity to fungicides were observed. Eighty-one percent of the isolates tested were resistant to mefenoxam with an EC50 >10 µg ml-1. Forty-two percent of the isolates showed an intermediate resistance to cymoxanil. The EC50 values ranged between 1 and 10 µg ml-1. For fluopicolide, 90% of the isolates were sensitive, with EC50 <1 µg ml-1. Host preference assays showed that potato isolates infected both host species. Thus, isolates that infect potatoes may pose a risk for tomato crops nearby.


Subject(s)
Fungicides, Industrial , Phytophthora infestans , Solanum lycopersicum , Solanum tuberosum , Colombia , Crops, Agricultural , Fungicides, Industrial/pharmacology , Genotype , Phytophthora infestans/genetics , Plant Diseases
2.
Plant Dis ; 104(4): 1113-1117, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32040390

ABSTRACT

Host-pathogen interactions of a new species of Phytophthora, causal agent of late blight of tree tomato (Solanum betaceum Cav.), identified as Phytophthora betacei, were investigated with four different cultivars. Thirty-six P. betacei isolates, collected from southern Colombia between 2008 and 2009, were used to inoculate common tree tomato cultivars, Común, Híbrido, Injerto, and Holandés. Data on incubation and latent periods as well as infection efficiency, lesion development, and total sporulation were collected via detached leaf assays. Significant differences in susceptibility, based on the parameters measured, were observed. Común was the most susceptible cultivar, followed by Injerto, Híbrido, and Holandés. The mean incubation period was lowest for Común at 125.6 h post-inoculation (hpi) and highest for Híbrido at 139.4 hpi. No significant differences in latent period were observed. All 36 isolates produced necrotic lesions on Común, and 33, 24, and 21 caused infection on Injerto, Híbrido, and Holandés, respectively. Two isolates were able to cause infection only on Común, and 13 isolates were able to infect all four cultivars. Infection efficiency was significantly higher for the cultivar Común, followed by Injerto, Híbrido, and Holandés. Average lesion size was larger on Común than on any other cultivar. An inverse relationship of lesion size and total sporulation was observed. Común had significantly lower total sporulation than Híbrido and Holandés, which had the smallest average lesion sizes. These data show variation in pathogenicity of P. betacei isolates, under controlled conditions, and differential susceptibility of four distinct S. betaceum cultivars.


Subject(s)
Phytophthora , Solanum lycopersicum , Solanum , Colombia , Plant Diseases , Trees
3.
Virus Res ; 271: 197674, 2019 10 02.
Article in English | MEDLINE | ID: mdl-31348964

ABSTRACT

Phytophthora infestans is the causal agent of potato and tomato late blight. This pathogen, which caused the Irish potato famine, is of profound historical significance and still poses a major threat in today's agroecosystems. Research on late blight epidemics usually focuses on pathogen virulence, host resistance, environmental factors and fungicide resistance. In this study, we examined the effect of PiRV-2, an RNA virus harbored by some P. infestans isolates, on its host. Comparing isogenic isolates with or without the virus demonstrated that the virus stimulated sporangia production in P. infestans. Transcriptome analysis suggested that it achieved sporulation stimulation likely through down-regulation of ammonium and amino acid intake in P. infestans. Survey of a limited P. infestans collection found PiRV-2 presence in most strains in the US-8 lineage, a very successful clonal lineage of P. infestans in North America. We suggest that PiRV-2 may affect the ecological fitness of P. infestans and thus could contribute to late blight epidemiology.


Subject(s)
Phytophthora infestans/virology , RNA Viruses/physiology , Spores, Fungal/virology , Phenotype , Plant Diseases/virology
4.
PLoS One ; 14(1): e0208606, 2019.
Article in English | MEDLINE | ID: mdl-30601865

ABSTRACT

In many parts of the world the damaging potato late blight pathogen, Phytophthora infestans, is spread as a succession of clonal lineages. The discrimination of genetic diversity within such evolving populations provides insights into the processes generating novel lineages and the pathways and drivers of pathogen evolution and dissemination at local and global scales. This knowledge, in turn, helps optimise management practices. Here we combine two key methods for dissecting mitochondrial and nuclear diversity and resolve intra and inter-lineage diversity of over 100 P. infestans isolates representative of key clonal lineages found globally. A novel set of PCR primers that amplify five target regions are provided for mitochondrial DNA sequence analysis. These five loci increased the number of mtDNA haplotypes resolved from four with the PCR RFLP method to 37 (17, 6, 8 and 4 for Ia, Ib, IIa, and IIb haplotypes, respectively, plus 2 Herb-1 haplotypes). As with the PCR RFLP method, two main lineages, I and II were defined. Group I contained 25 mtDNA haplotypes that grouped broadly according to the Ia and Ib types and resolved several sub-clades amongst the global sample. Group II comprised two distinct clusters with four haplotypes corresponding to the RFLP type IIb and eight haplotypes resolved within type IIa. The 12-plex SSR assay revealed 90 multilocus genotypes providing accurate discrimination of dominant clonal lineages and other genetically diverse isolates. Some association of genetic diversity and geographic region of contemporary isolates was observed; US and Mexican isolates formed a loose grouping, distinct from isolates from Europe, South America and other regions. Diversity within clonal lineages was observed that varied according to the age of the clone. In combination, these fine-scale nuclear and maternally inherited mitochondrial markers enabled a greater level of discrimination among isolates than previously available and provided complementary perspectives on evolutionary questions relating to the diversity, phylogeography and the origins and spread of clonal lineages of P. infestans.


Subject(s)
Cell Nucleus/genetics , DNA, Mitochondrial/genetics , Evolution, Molecular , Haplotypes/genetics , Microsatellite Repeats/genetics , Phytophthora infestans/genetics , Genetic Loci , Genetic Markers , Genetic Variation , Genome, Mitochondrial , Geography , Phylogeny , Phytophthora infestans/isolation & purification , Principal Component Analysis
5.
Arch Virol ; 164(2): 567-572, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30343382

ABSTRACT

Phytophthora infestans is the causal agent of potato and tomato late blight. In this study, we obtained the complete genome sequence of a novel RNA virus from this plant pathogen, tentatively named "Phytophthora infestans RNA virus 2" (PiRV-2). The PiRV-2 genome is 11,170 nt in length and lacks a polyA tail. It contains a single large open reading frame (ORF) with short 5' and 3' untranslated regions. The ORF is predicted to encode a polyprotein of 3710 aa (calculated molecular weight, 410.94 kDa). This virus lacks significant similarity to any other known viruses, even in the conserved RNA-dependent RNA polymerase region. Phylogenetic analysis demonstrated that it did not cluster with any known virus group. We conclude that PiRV-2 belongs to a new virus family yet to be described. This virus was found to be faithfully transmitted through asexual reproduction.


Subject(s)
Fungal Viruses/isolation & purification , Phytophthora infestans/virology , Plant Diseases/microbiology , RNA Viruses/isolation & purification , Fungal Viruses/classification , Fungal Viruses/genetics , Open Reading Frames , Phylogeny , RNA Viruses/classification , RNA Viruses/genetics , RNA-Dependent RNA Polymerase , Solanum tuberosum/microbiology , Viral Proteins/genetics
6.
Mol Plant Microbe Interact ; 32(5): 515-526, 2019 May.
Article in English | MEDLINE | ID: mdl-30480479

ABSTRACT

Sporangia of Phytophthora infestans from pure cultures on agar plates are typically used in lab studies, whereas sporangia from leaflet lesions drive natural infections and epidemics. Multiple assays were performed to determine if sporangia from these two sources are equivalent. Sporangia from plate cultures showed much lower rates of indirect germination and produced much less disease in field and moist-chamber tests. This difference in aggressiveness was observed whether the sporangia had been previously incubated at 4°C (to induce indirect germination) or at 21°C (to prevent indirect germination). Furthermore, lesions caused by sporangia from plates produced much less sporulation. RNA-Seq analysis revealed that thousands of the >17,000 P. infestans genes with a RPKM (reads per kilobase of exon model per million mapped reads) >1 were differentially expressed in sporangia obtained from plate cultures of two independent field isolates compared with sporangia of those isolates from leaflet lesions. Among the significant differentially expressed genes (DEGs), putative RxLR effectors were overrepresented, with almost half of the 355 effectors with RPKM >1 being up- or downregulated. DEGs of both isolates include nine flagellar-associated genes, and all were down-regulated in plate sporangia. Ten elicitin genes were also detected as DEGs in both isolates, and nine (including INF1) were up-regulated in plate sporangia. These results corroborate previous observations that sporangia produced from plates and leaflets sometimes yield different experimental results and suggest hypotheses for potential mechanisms. We caution that use of plate sporangia in assays may not always produce results reflective of natural infections and epidemics.


Subject(s)
Phytophthora infestans/physiology , Solanum lycopersicum , Sporangia/physiology , Transcriptome , Solanum lycopersicum/parasitology , Phytophthora infestans/genetics , Phytophthora infestans/growth & development , Sporangia/genetics , Sporangia/growth & development
7.
Sci Rep ; 8(1): 4429, 2018 03 13.
Article in English | MEDLINE | ID: mdl-29535313

ABSTRACT

The population structure of the Phytophthora infestans populations that caused the recent 2013-14 late blight epidemic in eastern India (EI) and northeastern India (NEI) was examined. The data provide new baseline information for populations of P. infestans in India. A migrant European 13_A2 genotype was responsible for the 2013-14 epidemic, replacing the existing populations. Mutations have generated substantial sub-clonal variation with 24 multi-locus genotypes (MLGs) found, of which 19 were unique variants not yet reported elsewhere globally. Samples from West Bengal were the most diverse and grouped alongside MLGs found in Europe, the UK and from neighbouring Bangladesh but were not linked directly to most samples from south India. The pathogen population was broadly more aggressive on potato than on tomato and resistant to the fungicide metalaxyl. Pathogen population diversity was higher in regions around the international borders with Bangladesh and Nepal. Overall, the multiple shared MLGs suggested genetic contributions from UK and Europe in addition to a sub-structure based on the geographical location within India. Our data indicate the need for improved phytosanitary procedures and continuous surveillance to prevent the further introduction of aggressive lineages of P. infestans into the country.


Subject(s)
Multilocus Sequence Typing/methods , Phytophthora infestans/classification , Plant Diseases/parasitology , Solanum tuberosum/parasitology , Epidemics , Europe , Evolution, Molecular , India , Phylogeny , Phylogeography , Phytophthora infestans/genetics , Phytophthora infestans/pathogenicity , Sequence Analysis, DNA/methods , United Kingdom
8.
PLoS One ; 11(11): e0165690, 2016.
Article in English | MEDLINE | ID: mdl-27812174

ABSTRACT

Genotyping-by-sequencing (GBS) was performed on 257 Phytophthora infestans isolates belonging to four clonal lineages to study within-lineage diversity. The four lineages used in the study were US-8 (n = 28), US-11 (n = 27), US-23 (n = 166), and US-24 (n = 36), with isolates originating from 23 of the United States and Ontario, Canada. The majority of isolates were collected between 2010 and 2014 (94%), with the remaining isolates collected from 1994 to 2009, and 2015. Between 3,774 and 5,070 single-nucleotide polymorphisms (SNPs) were identified within each lineage and were used to investigate relationships among individuals. K-means hierarchical clustering revealed three clusters within lineage US-23, with US-23 isolates clustering more by collection year than by geographic origin. K-means hierarchical clustering did not reveal significant clustering within the smaller US-8, US-11, and US-24 data sets. Neighbor-joining (NJ) trees were also constructed for each lineage. All four NJ trees revealed evidence for pathogen dispersal and overwintering within regions, as well as long-distance pathogen transport across regions. In the US-23 NJ tree, grouping by year was more prominent than grouping by region, which indicates the importance of long-distance pathogen transport as a source of initial late blight inoculum. Our results support previous studies that found significant genetic diversity within clonal lineages of P. infestans and show that GBS offers sufficiently high resolution to detect sub-structuring within clonal populations.


Subject(s)
DNA, Protozoan/genetics , Phytophthora infestans/genetics , Phytophthora infestans/isolation & purification , Plant Diseases/parasitology , Polymorphism, Single Nucleotide/genetics , Base Sequence , Canada , Genetic Linkage/genetics , Genotype , Geography , Solanum lycopersicum/parasitology , Sequence Analysis, DNA , Solanum tuberosum/parasitology , United States
9.
Annu Rev Phytopathol ; 54: 529-47, 2016 08 04.
Article in English | MEDLINE | ID: mdl-27359366

ABSTRACT

New tools have revealed that migrations of Phytophthora infestans have been a dominant feature of the population biology of this pathogen for the past 50 years, and maybe for the past 170 years. We now have accurate information on the composition of many P. infestans populations. However, migration followed by selection can lead and has led to dramatically rapid changes in populations over large regions. Except for the highlands of central Mexico, many populations of P. infestans have probably been in flux over the past several decades. There is some evidence that this pathogen has different characteristics in the field than it does in the lab, and early field phenotypic analyses of hypotheses concerning fitness and pathogenicity would be beneficial. The newly available capacity to acquire and process vast amounts of weather and weather forecast data in combination with advancements in molecular diagnostics enables much greater precision in late blight management to produce recommendations that are site, host, and pathogen specific.


Subject(s)
Phytophthora infestans/physiology , Plant Diseases/microbiology , Solanum lycopersicum/microbiology , Solanum tuberosum/microbiology , Mexico , Phytophthora infestans/genetics , Phytophthora infestans/growth & development
10.
Mol Plant Pathol ; 17(1): 29-41, 2016 Jan.
Article in English | MEDLINE | ID: mdl-25845484

ABSTRACT

Hemibiotrophic plant pathogens, such as the oomycete Phytophthora infestans, employ a biphasic infection strategy, initially behaving as biotrophs, where minimal symptoms are exhibited by the plant, and subsequently as necrotrophs, feeding on dead plant tissue. The regulation of this transition and the breadth of molecular mechanisms that modulate plant defences are not well understood, although effector proteins secreted by the pathogen are thought to play a key role. We examined the transcriptional dynamics of P. infestans in a compatible interaction with its host tomato (Solanum lycopersicum) at three infection stages: biotrophy; the transition from biotrophy to necrotrophy; and necrotrophy. The expression data suggest a tight temporal regulation of many pathways associated with the suppression of plant defence mechanisms and pathogenicity, including the induction of putative cytoplasmic and apoplastic effectors. Twelve of these were experimentally evaluated to determine their ability to suppress necrosis caused by the P. infestans necrosis-inducing protein PiNPP1.1 in Nicotiana benthamiana. Four effectors suppressed necrosis, suggesting that they might prolong the biotrophic phase. This study suggests that a complex regulation of effector expression modulates the outcome of the interaction.


Subject(s)
Phytophthora infestans/genetics , Phytophthora infestans/pathogenicity , Plant Diseases/microbiology , Solanum lycopersicum/microbiology , Transcription, Genetic , Cluster Analysis , Gene Expression Profiling , Gene Expression Regulation , Plant Leaves/microbiology , Proteins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sequence Analysis, DNA , Time Factors , Nicotiana/microbiology , Transcriptome/genetics
11.
Mol Plant Pathol ; 17(1): 42-54, 2016 Jan.
Article in English | MEDLINE | ID: mdl-25808779

ABSTRACT

The infection of plants by hemibiotrophic pathogens involves a complex and highly regulated transition from an initial biotrophic, asymptomatic stage to a later necrotrophic state, characterized by cell death. Little is known about how this transition is regulated, and there are conflicting views regarding the significance of the plant hormones jasmonic acid (JA) and salicylic acid (SA) in the different phases of infection. To provide a broad view of the hemibiotrophic infection process from the plant perspective, we surveyed the transcriptome of tomato (Solanum lycopersicum) during a compatible interaction with the hemibiotrophic oomycete Phytophthora infestans during three infection stages: biotrophic, the transition from biotrophy to necrotrophy, and the necrotrophic phase. Nearly 10 000 genes corresponding to proteins in approximately 400 biochemical pathways showed differential transcript abundance during the three infection stages, revealing a major reorganization of plant metabolism, including major changes in source-sink relations, as well as secondary metabolites. In addition, more than 100 putative resistance genes and pattern recognition receptor genes were induced, and both JA and SA levels and associated signalling pathways showed dynamic changes during the infection time course. The biotrophic phase was characterized by the induction of many defence systems, which were either insufficient, evaded or suppressed by the pathogen.


Subject(s)
Host-Pathogen Interactions/genetics , Phytophthora infestans/pathogenicity , Plant Leaves/genetics , Plant Leaves/microbiology , Solanum lycopersicum/genetics , Solanum lycopersicum/microbiology , Transcriptome/genetics , Disease Resistance/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant/drug effects , Gene Ontology , Genes, Plant , Host-Pathogen Interactions/drug effects , Solanum lycopersicum/drug effects , Phytophthora infestans/drug effects , Plant Growth Regulators/pharmacology , Plant Leaves/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Pattern Recognition/metabolism , Time Factors
12.
Plant Dis ; 100(7): 1482-1491, 2016 Jul.
Article in English | MEDLINE | ID: mdl-30686184

ABSTRACT

Phytophthora infestans, a pathogenic oomycete that is the causal agent of potato and tomato late blight, has devastating effects worldwide. The genetic composition of P. infestans populations in Canada has changed considerably over the last few years, with the appearance of several new genotypes showing different mating types and sensitivity to the fungicide metalaxyl. Genetic markers allowing for a rapid assessment of genotypes from small amounts of biological material would be beneficial for the early detection and control of this pathogen throughout Canada. Mining of the P. infestans genome revealed several regions containing single-nucleotide polymorphisms (SNP) within both nuclear genes and flanking sequences of microsatellite loci. Allele-specific oligonucleotide polymerase chain reaction (ASO-PCR) assays were developed from 14 of the 50 SNP found by sequencing. Nine optimized ASO-PCR assays were validated using a blind test comprising P. infestans and other Phytophthora spp. The assays revealed diagnostic profiles unique to each of the five dominant genotypes present in Canada. The markers developed in this study can be used with environmental samples such as infected leaves, and will contribute to the genomic toolbox available to assess the genetic diversity of P. infestans at the intraspecific level. For late blight management, early warning about P. infestans genotypes present in potato and tomato fields will help growers select the most appropriate fungicides and application strategies.

13.
Phytopathology ; 105(12): 1594-600, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26551315

ABSTRACT

Prior work has shown that the inheritance of resistance to metalaxyl, an oomycete-specific fungicide, is complex and may involve multiple genes. Recent research indicated that a single nucleotide polymorphism (SNP) in the gene encoding RPA190, the largest subunit of RNA polymerase I, confers resistance to metalaxyl (or mefenoxam) in some isolates of the potato late blight pathogen Phytophthora infestans. Using both DNA sequencing and high resolution melt assays for distinguishing RPA190 alleles, we show here that the SNP is absent from certain resistant isolates of P. infestans from North America, Europe, and Mexico. The SNP is present in some members of the US-23 and US-24 clonal lineages, but these tend to be fairly sensitive to the fungicide based on artificial media and field test data. Diversity in the level of sensitivity, RPA190 genotype, and RPA190 copy number was observed in these lineages but were uncorrelated. Controlled laboratory crosses demonstrated that RPA190 did not cosegregate with metalaxyl resistance from a Mexican and British isolate. We conclude that while metalaxyl may be used to control many contemporary strains of P. infestans, an assay based on RPA190 will not be sufficient to diagnose the sensitivity levels of isolates.


Subject(s)
Alanine/analogs & derivatives , Drug Resistance, Fungal/genetics , Fungicides, Industrial , Phytophthora infestans/genetics , Genetic Variation , Genotype , Polymorphism, Single Nucleotide
14.
Phytopathology ; 105(12): 1545-54, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26312965

ABSTRACT

The objective of this study was to evaluate the utility of the BlightPro decision support system (DSS) for late blight management using computer simulation and field tests. Three fungicide schedules were evaluated: (i) calendar-based (weekly) applications, (ii) applications according to the DSS, or (iii) no fungicide. Simulation experiments utilized 14 years of weather data from 59 locations in potato-producing states. In situations with unfavorable weather for late blight, the DSS recommended fewer fungicide applications with no loss of disease suppression; and, in situations of very favorable weather for late blight, the DSS recommended more fungicide applications but with improved disease suppression. Field evaluation was conducted in 2010, 2011, 2012, and 2013. All experiments involved at least two cultivars with different levels of resistance. DSS-guided and weekly scheduled fungicide treatments were successful at protecting against late blight in all field experiments. As expected, DSS-guided schedules were influenced by prevailing weather (observed and forecast) and host resistance and resulted in schedules that maintained or improved disease suppression and average fungicide use efficiency relative to calendar-based applications. The DSS provides an interactive system that helps users maximize the efficiency of their crop protection strategy by enabling well-informed decisions.


Subject(s)
Decision Support Techniques , Fungicides, Industrial/administration & dosage , Pest Control/methods , Solanum tuberosum/microbiology , Computer Simulation , Plant Diseases
15.
Plant Dis ; 99(5): 659-666, 2015 May.
Article in English | MEDLINE | ID: mdl-30699679

ABSTRACT

Phytophthora infestans causes potato late blight, an important and costly disease of potato and tomato crops. Seven clonal lineages of P. infestans identified recently in the United States were tested for baseline sensitivity to six oomycete-targeted fungicides. A subset of the dominant lineages (n = 45) collected between 2004 and 2012 was tested in vitro on media amended with a range of concentrations of either azoxystrobin, cyazofamid, cymoxanil, fluopicolide, mandipropamid, or mefenoxam. Dose-response curves and values for the effective concentration at which 50% of growth was suppressed were calculated for each isolate. The US-8 and US-11 clonal lineages were insensitive to mefenoxam while the US-20, US-21, US-22, US-23, and US-24 clonal lineages were sensitive to mefenoxam. Insensitivity to azoxystrobin, cyazofamid, cymoxanil, fluopicolide, or mandipropamid was not detected within any lineage. Thus, current U.S. populations of P. infestans remained sensitive to mefenoxam during the displacement of the US-22 lineage by US-23 over the past 5 years.

16.
Phytopathology ; 105(3): 342-9, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25226526

ABSTRACT

The systemic fungicide mefenoxam has been important in the control of late blight disease caused by Phytophthora infestans. This phenylamide fungicide has a negative effect on the synthesis of ribosomal RNA; however, the genetic basis for inherited field resistance is still not completely clear. We recently observed that a sensitive isolate became tolerant after a single passage on mefenoxam-containing medium. Further analyses revealed that all sensitive isolates tested (in three diverse genotypes) acquired this resistance equally quickly. In contrast, isolates that were "resistant" to mefenoxam in the initial assessment (stably resistant) did not increase in resistance upon further exposure. However, there appeared to be a cost associated with acquired resistance in the initially sensitive isolates, in that isolates with acquired resistance grew more slowly on mefenoxam-free medium than did the same isolates that had never been exposed to mefenoxam. The acquired resistance of the sensitive isolates declined slightly with subsequent culturing on medium free of mefenoxam. To investigate the mechanism of acquired resistance, we employed strand-specific RNA sequencing. Many differentially expressed genes were genotype specific, but one set of genes was differentially expressed in all genotypes. Among these were several genes (a phospholipase "Pi-PLD-like-3," two ATP-binding cassette superfamily [ABC] transporters, and a mannitol dehydrogenase) that were up-regulated and whose function might contribute to a resistance phenotype.


Subject(s)
Alanine/analogs & derivatives , Drug Resistance, Microbial , Phytophthora infestans/physiology , Genotype , Sequence Analysis, DNA , Transcriptome
17.
Mol Plant Pathol ; 16(4): 413-34, 2015 May.
Article in English | MEDLINE | ID: mdl-25178392

ABSTRACT

Oomycetes form a deep lineage of eukaryotic organisms that includes a large number of plant pathogens which threaten natural and managed ecosystems. We undertook a survey to query the community for their ranking of plant-pathogenic oomycete species based on scientific and economic importance. In total, we received 263 votes from 62 scientists in 15 countries for a total of 33 species. The Top 10 species and their ranking are: (1) Phytophthora infestans; (2, tied) Hyaloperonospora arabidopsidis; (2, tied) Phytophthora ramorum; (4) Phytophthora sojae; (5) Phytophthora capsici; (6) Plasmopara viticola; (7) Phytophthora cinnamomi; (8, tied) Phytophthora parasitica; (8, tied) Pythium ultimum; and (10) Albugo candida. This article provides an introduction to these 10 taxa and a snapshot of current research. We hope that the list will serve as a benchmark for future trends in oomycete research.


Subject(s)
Oomycetes/classification , Plants/microbiology , Oomycetes/pathogenicity
18.
Proc Natl Acad Sci U S A ; 111(24): 8791-6, 2014 Jun 17.
Article in English | MEDLINE | ID: mdl-24889615

ABSTRACT

Phytophthora infestans is a destructive plant pathogen best known for causing the disease that triggered the Irish potato famine and remains the most costly potato pathogen to manage worldwide. Identification of P. infestan's elusive center of origin is critical to understanding the mechanisms of repeated global emergence of this pathogen. There are two competing theories, placing the origin in either South America or in central Mexico, both of which are centers of diversity of Solanum host plants. To test these competing hypotheses, we conducted detailed phylogeographic and approximate Bayesian computation analyses, which are suitable approaches to unraveling complex demographic histories. Our analyses used microsatellite markers and sequences of four nuclear genes sampled from populations in the Andes, Mexico, and elsewhere. To infer the ancestral state, we included the closest known relatives Phytophthora phaseoli, Phytophthora mirabilis, and Phytophthora ipomoeae, as well as the interspecific hybrid Phytophthora andina. We did not find support for an Andean origin of P. infestans; rather, the sequence data suggest a Mexican origin. Our findings support the hypothesis that populations found in the Andes are descendants of the Mexican populations and reconcile previous findings of ancestral variation in the Andes. Although centers of origin are well documented as centers of evolution and diversity for numerous crop plants, the number of plant pathogens with a known geographic origin are limited. This work has important implications for our understanding of the coevolution of hosts and pathogens, as well as the harnessing of plant disease resistance to manage late blight.


Subject(s)
Evolution, Molecular , Phytophthora infestans/genetics , Solanum tuberosum/parasitology , Algorithms , Bayes Theorem , Colombia , Ecuador , Genotype , Geography , History, 19th Century , Humans , Ireland , Mexico , Microsatellite Repeats , Molecular Sequence Data , Peru , Phylogeny , Plant Diseases/history , Principal Component Analysis , Starvation/history
19.
PLoS One ; 9(12): e116354, 2014.
Article in English | MEDLINE | ID: mdl-25551215

ABSTRACT

Phytophthora infestans, the causal agent of late blight disease, has been reported in North America since the mid-nineteenth century. In the United States the lack of or very limited sexual reproduction has resulted in largely clonal populations of P. infestans. In 2010 and 2011, but not in 2012 or 2013, 20 rare and diverse genotypes of P. infestans were detected in a region that centered around central New York State. The ratio of A1 to A2 mating types among these genotypes was close to the 50∶50 ratio expected for sexual recombination. These genotypes were diverse at the glucose-6-phosphate isomerase locus, differed in their microsatellite profiles, showed different banding patterns in a restriction fragment length polymorphism assay using a moderately repetitive and highly polymorphic probe (RG57), were polymorphic for four different nuclear genes and differed in their sensitivity to the systemic fungicide mefenoxam. The null hypothesis of linkage equilibrium was not rejected, which suggests the population could be sexual. These new genotypes were monomorphic in their mitochondrial haplotype that was the same as US-22. Through parentage exclusion testing using microsatellite data and sequences of four nuclear genes, recent dominant lineages US-8, US-11, US-23, and US-24 were excluded as possible parents for these genotypes. Further analyses indicated that US-22 could not be eliminated as a possible parent for 14 of the 20 genotypes. We conclude that US-22 could be a parent of some, but not all, of the new genotypes found in 2010 and 2011. There were at least two other parents for this population and the genotypic characteristics of the other parents were identified.


Subject(s)
Phytophthora infestans/genetics , Canada , DNA, Mitochondrial/chemistry , Genetic Markers , Genotype , Haplotypes , Microsatellite Repeats , Phytophthora infestans/physiology , Population Density , Reproduction , United States
20.
Gene ; 537(2): 312-21, 2014 Mar 10.
Article in English | MEDLINE | ID: mdl-24361203

ABSTRACT

The oomycete Phytophthora infestans, causal agent of the tomato and potato late blight, generates important economic and environmental losses worldwide. As current control strategies are becoming less effective, there is a need for studies on oomycete metabolism to help identify promising and more effective targets for chemical control. The pyrimidine pathways are attractive metabolic targets to combat tumors, virus and parasitic diseases but have not yet been studied in Phytophthora. Pyrimidines are involved in several critical cellular processes and play structural, metabolic and regulatory functions. Here, we used genomic and transcriptomic information to survey the pyrimidine metabolism during the P. infestans life cycle. After assessing the putative gene machinery for pyrimidine salvage and de novo synthesis, we inferred genealogies for each enzymatic domain in the latter pathway, which displayed a mosaic origin. The last two enzymes of the pathway, orotate phosphoribosyltransferase and orotidine-5-monophosphate decarboxylase, are fused in a multi-domain enzyme and are duplicated in some P. infestans strains. Two splice variants of the third gene (dihydroorotase) were identified, one of them encoding a premature stop codon generating a non-functional truncated protein. Relative expression profiles of pyrimidine biosynthesis genes were evaluated by qRT-PCR during infection in Solanum phureja. The third and fifth genes involved in this pathway showed high up-regulation during biotrophic stages and down-regulation during necrotrophy, whereas the uracil phosphoribosyl transferase gene involved in pyrimidine salvage showed the inverse behavior. These findings suggest the importance of de novo pyrimidine biosynthesis during the fast replicative early infection stages and highlight the dynamics of the metabolism associated with the hemibiotrophic life style of pathogen.


Subject(s)
Phytophthora infestans/genetics , Phytophthora infestans/metabolism , Phytophthora infestans/pathogenicity , Pyrimidines/biosynthesis , Alternative Splicing , Cloning, Molecular , Dihydroorotase/genetics , Dihydroorotase/metabolism , Orotate Phosphoribosyltransferase/genetics , Orotate Phosphoribosyltransferase/metabolism , Orotidine-5'-Phosphate Decarboxylase/genetics , Orotidine-5'-Phosphate Decarboxylase/metabolism , Phylogeny , Pyrimidines/metabolism , Solanum/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...