Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Ground Water ; 62(2): 174-183, 2024.
Article in English | MEDLINE | ID: mdl-37482948

ABSTRACT

Chemical and isotopic processes occur in every segment of the hydrological cycle. Hydrogeochemistry-the subdiscipline that studies these processes-has seen a transformation from "witch's brew" to credible science since 2000. Going forward, hydrogeochemical research and applications are critical to meeting urgent societal needs of climate change mitigation and clean energy, such as (1) removing CO2 from the atmosphere and storing gigatons of CO2 in soils and aquifers to achieve net-zero emissions, (2) securing critical minerals in support of the transition from fossil fuels to renewable energies, and (3) protecting water resources by adapting to a warming climate. In the last two decades, we have seen extensive activity and progress in four research areas of hydrogeochemistry related to water-rock interactions: arsenic contamination of groundwater; the use of isotopic and chemical tracers to quantify groundwater recharge and submarine groundwater discharge; the kinetics of chemical reactions and the mineral-water interface's control of contaminant fate and transport; and the transformation of geochemical modeling from an expert-only exercise to a widely accessible tool. In the future, embracing technological advances in machine learning, cyberinfrastructure, and isotope analytical tools will allow breakthrough research and expand the role of hydrogeochemistry in meeting society's needs for climate change mitigation and the transition from fossil fuels to renewable energies.


Subject(s)
Groundwater , Water Pollutants, Chemical , Groundwater/chemistry , Environmental Monitoring , Carbon Dioxide , Water , Fossil Fuels , Water Pollutants, Chemical/analysis
2.
Isotopes Environ Health Stud ; 58(4-6): 380-401, 2022.
Article in English | MEDLINE | ID: mdl-36240324

ABSTRACT

North-central Ukraine is vulnerable to temperature increases and precipitation pattern changes associated with climate change. With water management becoming increasingly important, information on current water sources and moisture recycling is critically needed. Isotope ratios of oxygen (δ18O) and hydrogen (δ2H) in precipitation are sensitive to these variables and allow comparisons across the region. The δ2H and δ18O values from collected precipitation in Kyiv and Cherkasy in 2020 and published 3H data for Kyiv from the year 2000 show an influence of the North Atlantic Oscillation (NAO) and provide information about processes affecting precipitation along the storm trajectory. The δ18O values also show a correlation with temperature, indicating that precipitation patterns may be affected by the rising temperatures in the region, as predicted by recent regional studies using Representative Concentration Pathway scenarios and the global climate model GFDL-ESM2M. When compared to backtracked storm trajectory and NAO data, clear relationships emerged between water isotope ratios, storm paths, and likely moisture recycling. Overall, δ2H, δ18O, 3H, and backtracked storm trajectory data provide more regional and local information on water vapour processes, improving climate-change-driven precipitation forecasts in Ukraine.


Subject(s)
Isotopes , Ukraine
3.
Discov Water ; 2(1): 13, 2022.
Article in English | MEDLINE | ID: mdl-38013790

ABSTRACT

Stable isotopes of water allow researchers to examine water pathways and better understand spatial and temporal variability in mixtures of municipal water sources. In regions such as Kyiv (Ukraine), with a water supply that is vulnerable to the effects of climate change, pollution, and geopolitical conflict, such understanding is critical for effective water management. Trends in stable isotope values and water sources can function as a confirmation of municipal data. Additionally, these data can provide an early signal for the effects of climate change on these sources, reducing uncertainty from physical measurements. For this study, tap water, surface water, and groundwater were collected over 14 months in Kyiv and nearby Boryspil, Brovary, and Boyarka and measured for hydrogen (δ2H) and oxygen (δ18O) stable isotopes. The stable isotope values from the tap water for each district show a general seasonal trend in water sources, with more groundwater used in the supply in the winter for most districts. Spatially, groundwater use increases from south to north in the left-bank districts in Kyiv city and groundwater use generally decreases from south to north in the right-bank districts. As precipitation patterns shift and temperatures increase, the reliance on particular water sources may need to shift as well. Overall, δ2H and δ18O data provide a baseline expectancy for current water use throughout the year and, from this, deviations can be assessed early. Supplementary Information: The online version contains supplementary material available at 10.1007/s43832-022-00021-x.

4.
Environ Sci Pollut Res Int ; 29(6): 9318-9340, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34499306

ABSTRACT

To monitor groundwater salinization due to seawater intrusion (SWI) in the aquifer of the eastern Nile Delta, Egypt, we developed a predictive regression model based on an innovative approach using SWI indicators and artificial intelligence (AI) methodologies. Hydrogeological and hydrogeochemical data of the groundwater wells in three periods (1996, 2007, and 2018) were used as input data for the AI methods. All the studied indicators were enrolled in feature extraction process where the most significant inputs were determined, including the studied year, the distance from the shoreline, the aquifer type, and the hydraulic head. These inputs were used to build four basic AI models to get the optimal prediction results of the used indicators (the base exchange index (BEX), the groundwater quality index for seawater intrusion (GQISWI), and water quality). The machine learning models utilized in this study are logistic regression, Gaussian process regression, feedforward backpropagation neural networks (FFBPN), and deep learning-based long-short-term memory. The FFBPN model achieved higher evaluation results than other models in terms of root mean square error (RMSE) and R2 values in the testing phase, with R2 values of 0.9667, 0.9316, and 0.9259 for BEX, GQISWI, and water quality, respectively. Accordingly, the FFBPN was used to build a predictive model for electrical conductivity for the years 2020 and 2030. Reasonable results were attained despite the imbalanced nature of the dataset for different times and sample sizes. The results show that the 1000 µS/cm boundary is expected to move inland ~9.5 km (eastern part) to ~10 km (western part) to ~12.4 km (central part) between 2018 and 2030. This encroachment would be hazardous to water resources and agriculture unless action plans are taken.


Subject(s)
Artificial Intelligence , Groundwater , Egypt , Environmental Monitoring , Seawater
5.
Environ Sci Pollut Res Int ; 28(11): 13736-13751, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33196994

ABSTRACT

The Dammam Formation in the southern and western deserts of Iraq is an important aquifer because it contains a huge groundwater reserve suitable for various uses. In the Karbala-Najaf plateau and the neighboring areas of the middle of Iraq, the drilling of groundwater wells usually fails due to the contamination of this aquifer with hydrocarbon from the deep oil reservoirs. This work suggests a method for the spatial delineation of groundwater contamination in this aquifer. Three machine learning classifiers, backpropagation multi-layer perceptron artificial neural networks (ANN), support vector machine with radial basis function (SVM-radial), and random forest (RF) with GIS, were used to map the probability of contamination in this aquifer. An inventory map of 139 groundwater boreholes (contaminated and non-contaminated) was utilized for building the models with seven factors that are considered to control contamination: fault density, distance to faults in general and the Abu Jir fault in particular, groundwater depth, hydraulic conductivity, aquifer saturated thickness, and land-surface elevation. The Relief-F feature selection method indicated that all factors were relevant. Five statistical measures were used for comparing the model performance: accuracy, sensitivity, specificity, kappa, and the area under the receiver operating characteristics curve (AUC). Applying the models using the R statistical package indicated that all models had excellent goodness-of-fit (accuracy > 90%), but the ANN (accuracy = 97%, sensitivity = 1.00%, specificity = 96%, kappa = 0.93, and AUC = 0.97) and RF (accuracy = 95%, sensitivity = 1.00%, specificity = 93%, kappa = 0.88, and AUC = 0.98) outperformed SVM-radial (accuracy = 92%, sensitivity = 1.00%, specificity = 90%, kappa = 0.82, and AUC = 0.95). The contamination probability values produced by these three models were categorized into different contamination zones range from very low to very high. The finding of this analysis may be used as a guide for drilling uncontaminated wells of groundwater.


Subject(s)
Groundwater , Oil and Gas Fields , Algorithms , Environmental Monitoring , Geographic Information Systems , Hydrocarbons , Iraq , Machine Learning , Probability
6.
Ground Water ; 58(1): 70-78, 2020 01.
Article in English | MEDLINE | ID: mdl-30982960

ABSTRACT

Lack of filtration and rapid transport of groundwater and particulate matter make karst aquifers susceptible to bacterial contamination. This study utilized quantitative polymerase chain reaction (qPCR) to examine the transport and attenuation of two nonvirulent isolates of Escherichia coli (E. coli) in relation to traditional groundwater tracers (rhodamine WT dye and 1-µm diameter latex microspheres) in a karst-conduit aquifer in central Kentucky. Bacterial isolates were labeled with stable isotopes (15 N and 13 C). All tracers were detected more than 6 km downstream from the injection site and demonstrated overlapping breakthrough curves, with differential transport observed between the two bacterial strains. The E. coli isolate containing the kps gene (low attachment) arrived at sampling sites 1.25 to 36 h prior to the bacterial isolate containing the iha gene (high attachment) and was detected in samples collected following storm events in which the iha isolate was not detected. The storage potential of contaminants within karst systems was demonstrated by the remobilization of all tracers during storm events more than 1 month after injection. Bacteria-sized microspheres were more easily remobilized during periods of increased discharge compared to other tracers. The study demonstrated that molecular biology techniques such as qPCR can be utilized as a sensitive analysis of bacterial tracers in karst aquifers and may prove to be a more sensitive analytical technique than stable isotope analysis for field-scale traces.


Subject(s)
Groundwater , Bacteria , Escherichia coli , Kentucky
7.
Sci Total Environ ; 689: 1370-1387, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31466173

ABSTRACT

High groundwater arsenic (As) across the globe has been one of the most well researched environmental concerns during the last two decades. Consequently, a large scientific knowledge-base has been developed on As distributions from local to global scales. However, differences in bulk sediment As concentrations cannot account for the As concentration variability in groundwater. Instead, in general, only aquifers in sedimentary basins adjacent to mountain chains (orogenic foreland basins) along continental convergent tectonic margins are found to be As-enriched. We illustrate this association by integrating observations from long-term studies of two of the largest orogenic systems (i.e., As sources) and the aquifers in their associated foreland basins (As sinks), which are located in opposite hemispheres and experience distinct differences in climate and land-use patterns. The Andean orogenic system of South America (AB), an active continental margin, is in principle a modern analogue of the Himalayan orogenic system associated with the Indus-Ganges-Brahmaputra river systems in South Asia (HB). In general, the differences in hydrogeochemistry between AB and HB groundwaters are conspicuous. Major-solute composition of the arid, oxic AB groundwater exhibits a mixed-ion hydrochemical facies dominated by Na-Ca-Cl-SO4-HCO3. Molar calculations and thermodynamic modeling show that although groundwater of AB is influenced by cation exchange, its hydrochemical evolution is predominated by feldspar dissolution and relationships with secondary clays. In contrast, humid, strongly reducing groundwater of HB is dominated by Ca-HCO3 facies, suggestive of calcite dissolution, along with some weathering of silicates (monosiallitization). This work demonstrates that although hydrogeochemical evolutionary trends may vary with local climate and lithology, the fundamental similarities in global tectonic settings can still lead to the elevated concentrations of groundwater As.

8.
Sci Total Environ ; 683: 793-807, 2019 Sep 15.
Article in English | MEDLINE | ID: mdl-31153003

ABSTRACT

More than 100 million people around the world are endangered by geogenic arsenic (As) in groundwater, residing in sedimentary aquifers. However, not all sedimentary aquifers are groundwater As enriched, and the ultimate source of As in enriched aquifer sediments is yet-unknown, globally. A reconnaissance of the major aquifers suggests that major As enriched aquifers are predictably systematic on a global scale, existing in sedimentary foreland basins in the vicinity of modern or ancient orogenic systems. In conformity with the Principle of Uniformitarianism, we demonstrate that the groundwater As comes from magmatic arcs (primary source) in present (e.g. Andes) or ancient (e.g. Himalaya) continental convergent margins of some of the most prominent orogenic systems across the globe, and ends up in sediments (secondary source) in adjoining foreland or related basins that eventually act as aquifers. These arc magmas scavenge As while rising through the deep continental crust. Erosion of such orogens ultimately increases the bulk As content in sediments of adjoining basins, leading to groundwater As enrichment in downstream aquifers. Such As-polluted aquifers are eventually extensively used for groundwater exploitation, for drinking and other human purposes. Surface geological and biogeochemical processes, like redox reactions, are conducive to such groundwater As enrichment. We suggest this model by integrating our study of long-time observations in Himalayan and Andean basin aquifers, and generalizing 63 major aquifers across the globe, to demonstrate the source-to-sink transport of As, thereby delineating it's geogenic cycling in the subsurface. This work outlines the specifics of the mechanisms that would drive the processes of groundwater As enrichment across spatio-temporal scales, i.e. tectonic-scale taking place over millions of years on continental-scale and groundwater pollution taking place at human time-scales on village to household scale. Thus, in this work, we demonstrate a direct evidence of connectivity between global geological processes and individual human health.

9.
Water Res ; 157: 1-7, 2019 Jun 15.
Article in English | MEDLINE | ID: mdl-30947079

ABSTRACT

Reducing pathogenic risks in surface waters impacted by leaking or overflowing sewage requires the ability to detect human excreta in raw sewage, discriminate human excreta from other types of animal excreta, and differentiate between treated wastewater and raw sewage. We used the relative concentrations of a degradable, human-specific pharmaceutical and a persistent artificial sweetener to indicate the presence of human excreta, its degree of environmental degradation, and the amount of dilution by freshwater sources. Samples were collected and analyzed for acetaminophen and sucralose between 2016 and 2018 from wastewater treatment plants (WWTPs) and streams in metropolitan Lexington, Kentucky (USA). Both co-analytes were consistently present in raw sewage, with acetaminophen in higher concentrations than sucralose. The presence of acetaminophen was related primarily to untreated human excreta, with concentrations rapidly decreasing upon treatment to nearly undetectable levels in WWTP effluents and streams. Sucralose in surface waters was related to inputs of both raw sewage and WWTP effluents. The ratio of acetaminophen to sucralose concentrations in raw sewage and spiked river waters exhibited linear decay kinetics with respect to time, with larger decay constants observed at higher temperatures. This co-analyte indicator approach was evaluated at a local site previously suspected of receiving raw sewage. The presence and ratios of the co-analytes indicated the presence of domestic sewage that was not fully treated.


Subject(s)
Acetaminophen , Water Pollutants, Chemical , Environmental Monitoring , Humans , Kentucky , Sewage , Sucrose/analogs & derivatives , Wastewater
10.
Sci Total Environ ; 645: 1371-1387, 2018 Dec 15.
Article in English | MEDLINE | ID: mdl-30248860

ABSTRACT

Understanding the controls on spatial variability of groundwater arsenic (As) is critical for mitigating As contamination. The objective of this study is to determine controls on previously unexplained differences in groundwater As concentrations, which are high along the east bank and low along the west bank of the River Bhagirathi-Hoogly (B-H), the primary Indian distributary of the River Ganges, on the western margin of the Bengal basin. A total of 54 wells were sampled after the monsoon season at four sites (two each east and west of the B-H) in Murshidabad district, West Bengal, for field parameters, major and minor solutes, and stable isotopes of water. An additional four boreholes were drilled for analyses of sediment texture, mineralogy, total organic and inorganic carbon, and total As and other metal(loid)s. Results show that higher As in east-bank groundwater (median 0.031 mg/L) is associated with generally more anoxic conditions (higher median total Fe and lower median EH and NO3-) relative to west-bank groundwater (median As < 0.001 mg/L), consistent with previous studies. In contrast, concentrations of Mn in the study area are highest in west-bank wells near the B-H. Carbonate and silicate weathering appear to be more important in east- and west-bank groundwater, respectively, which may reflect differences in sediment sources. Ranges of total As are similar in east- and west-bank sediments. Relatively depleted values of δ18O and δ2H in the east-bank aquifer and streams appear to reflect focused recharge through paleochannels, while relatively enriched west-bank values suggest diffuse recharge to upland aquifers. We speculate that water infiltrating through erosional, stratigraphic "windows" carries organic matter capable of mobilizing As in east-bank groundwater. This comprehensive evaluation of groundwater chemistry provides a more detailed understanding of controls on As variability within the basin.

11.
J Environ Qual ; 47(1): 88-95, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29415110

ABSTRACT

Bacterial contamination of karst aquifers is a global concern as water quality deteriorates in the face of decreasing water security. Traditional abiotic groundwater tracers, which do not exhibit surface properties similar to bacteria, may not be good proxies for risk assessment of bacterial transport in karst environments. This study examined the transport and attenuation of two isolates of in relation to traditional groundwater tracers (rhodamine WT dye and 1-µm-diam. latex microspheres) through ∼30 m of epikarst in western Kentucky. Differential movement of the four tracers was observed, with tracer behavior dependent on flow conditions. Dye arrived at the sampling site prior to particulates. Molecular biology techniques successfully detected bacteria in the cave and showed attenuation was greater for a bacterial isolate with high attachment efficiency compared with an isolate known to have low attachment efficiency. Microspheres were first detected simultaneously with the low-attachment isolate but attained maximum concentrations during increases in discharge >11 d post-injection. Bacteria were remobilized by storm events >60 d after injection, illustrating the storage capacity of epikarst with regard to potential contaminants. The two bacterial strains were not transported at the same rate within the epikarst, showing breakthroughs during differing storm events and illustrating the importance of cell surface chemistry in the prediction of microorganism movement. Moreover, this study has shown that molecular analysis can be successfully used to target, quantify, and track introduced microbial tracers in karst terrains.


Subject(s)
Escherichia coli , Groundwater , Environmental Monitoring , Water Movements , Water Quality
12.
Isotopes Environ Health Stud ; 53(3): 298-312, 2017 Jun.
Article in English | MEDLINE | ID: mdl-27919163

ABSTRACT

Groundwater depletion and changes in isotopic and chemical contents constitute the main indicators of overexploitation, recharge, and flow paths in the Souss-Massa aquifer. These indicators highlight processes concerning sustainability of water resources in the aquifer (e.g. surface/groundwater interaction, recharge processes, and marine intrusion). The spatial variation of stable and radioactive isotopic contents indicates a mixing of modern and old water within the system. Recent recharge was observed mainly along the Souss River (the major surface-water drainage in the study area) and in the irrigated areas. Mapping of chemical and isotopic variation shows that the area is affected by abstraction, irrigation water return, and the evolution of modern recharge in time and space. The processes, distribution, and timing of groundwater flow are influenced by short- and long-term effects; long-term recharge is dependent on climatic conditions. This study can be used to make informed decisions about water-resource allocation and alternative management practices.


Subject(s)
Conservation of Natural Resources , Environmental Monitoring/methods , Groundwater/analysis , Water Movements , Water Resources , Carbon Isotopes/analysis
13.
Ground Water ; 54(6): 830-839, 2016 11.
Article in English | MEDLINE | ID: mdl-27089430

ABSTRACT

Karst aquifers are susceptible to contamination by microorganisms, but relatively few studies have used bacteria as tracers. We demonstrate the utility of Escherichia coli enriched in the stable isotope nitrogen-15 (15 N) as a novel bacterial tracer. Nonpathogenic E. coli from two springs in central Kentucky were grown on 15 N-enriched media. Survival of E. coli and persistence of the isotopic signal were assessed in two sets of laboratory experiments conducted with sterilized spring water in dark microcosms at 14 °C. First, isotopically labeled bacteria survived for 130 d at concentrations within one log unit of the average initial value, and there was no significant difference in δ15 N values from Day 1 to Day 130. Second, water samples with E. coli were inoculated with either of two different species of protozoa (Tetrahymena pyriformis or Colpoda steinii). During 7 d, δ15 N values increased in T. pyriformis while bacterial populations decreased. In a field test, following a 2.1-cm rainfall, 15 N-labeled E. coli, solutes (rhodamine WT dye and bromide), and latex microspheres were injected into a sinkhole approximately 530 m upgradient of a spring. Breakthrough of all tracers coincided, but microspheres were remobilized by subsequent storms, unlike other tracers. Enriched E. coli exhibited more tailing than solute tracers during the initial storm-flow recession. These results indicate that 15 N-enriched E. coli is a viable tracer of bacterial transport in karst aquifers, although predation may attenuate the isotopic signal in systems that are not rapidly flushed.


Subject(s)
Escherichia coli , Groundwater , Kentucky , Nitrogen , Water Movements
14.
J Environ Qual ; 44(5): 1694-8, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26436286

ABSTRACT

Human-associated fecal biomarkers offer potent tools for the detection and control of human fecal pollution in watersheds. In some cases, the probability of false-negative findings may call for using a less specific biomarker that is present in higher quantities as long as it can be related to the more specific indicator. The objective of this study is to investigate the relationship between two previously published human-associated biomarkers for Bacteroidales bacteria in an urban watershed influenced by human fecal pollution and to determine if the less specific marker may be used to identify the locations of broken or leaking sewer lines. Samples were collected from 19 stream locations on 10 dates. Sample DNA was extracted and qPCR analysis was conducted for the HuBac and qHF183 biomarkers. The HuBac biomarker was detected more frequently than the qHF183 biomarker and in greater quantities when both were detected. A strong linear relationship ( = 0.91) between the two markers was observed in 219 samples taken from both the watershed and inlet sewage. The relationship between the two biomarkers showed less variance at higher concentrations. However, even when the inlet sewage samples were excluded from the dataset, a clear linear relationship remained ( = 0.74). The results indicate that use of a less specific, but more sensitive, biomarker may provide greater utility when the prevention of false negatives is necessary and the primary fecal source is known, as in spatial distribution studies of human fecal pollution in an urban watershed.

15.
Ground Water ; 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24690002
16.
Ground Water ; 48(2): 306-19, 2010.
Article in English | MEDLINE | ID: mdl-19210561

ABSTRACT

Irrigation, urbanization, and drought pose challenges for the sustainable use of ground water in the central Couloir sud rifain, a major agricultural region in north-central Morocco, which includes the cities of Fès and Meknès. The central Couloir is underlain by unconfined and confined carbonate aquifers that have suffered declines in hydraulic head and reductions in spring flow in recent decades. Previous studies have surveyed ground water flow and water quality in wells and springs but have not comprehensively addressed the chemistry of the regional aquifer system. Using graphical techniques and saturation index calculations, we infer that major ion chemistry is controlled (1) in the surficial aquifer by cation exchange, calcite dissolution, mixing with deep ground water, and possibly calcite precipitation and (2) in the confined aquifer and warm springs by calcite dissolution, dolomite dissolution, mixing with water that has dissolved gypsum and halite, and calcite precipitation. Analyses of (2)H and (18)O indicate that shallow ground water is affected by evaporation during recharge (either of infiltrating precipitation or return flow), whereas deep ground water is sustained by meteoric recharge with little evaporation. Mechanisms of recharge and hydrochemical evolution are broadly consistent with those delineated for similar regional aquifer systems elsewhere in Morocco and in southern Spain.


Subject(s)
Water Movements , Water Supply/analysis , Morocco
17.
Ground Water ; 47(4): 605-10, 2009.
Article in English | MEDLINE | ID: mdl-19178570
18.
J Contam Hydrol ; 99(1-4): 31-48, 2008 Jul 29.
Article in English | MEDLINE | ID: mdl-18164513

ABSTRACT

Although arsenic (As) contamination of groundwater in the Bengal Basin has received wide attention over the past decade, comparative studies of hydrogeochemistry in geologically different sub-basins within the basin have been lacking. Groundwater samples were collected from sub-basins in the western margin (River Bhagirathi sub-basin, Nadia, India; 90 samples) and eastern margin (River Meghna sub-basin; Brahmanbaria, Bangladesh; 35 samples) of the Bengal Basin. Groundwater in the western site (Nadia) has mostly Ca-HCO(3) water while that in the eastern site (Brahmanbaria) is much more variable consisting of at least six different facies. The two sites show differences in major and minor solute trends indicating varying pathways of hydrogeochemical evolution However, both sites have similar reducing, postoxic environments (p(e): +5 to -2) with high concentrations of dissolved organic carbon, indicating dominantly metal-reducing processes and similarity in As mobilization mechanism. The trends of various redox-sensitive solutes (e.g. As, CH(4), Fe, Mn, NO(3)(-), NH(4)(+), SO(4)(2-)) indicate overlapping redox zones, leading to partial redox equilibrium conditions where As, once liberated from source minerals, would tend to remain in solution because of the complex interplay among the electron acceptors.


Subject(s)
Arsenic/analysis , Environmental Monitoring , Fresh Water/analysis , Geologic Sediments , Water Pollutants, Chemical/analysis , Geologic Sediments/analysis , Geologic Sediments/chemistry , Geological Phenomena , India , Indian Ocean , Models, Theoretical , Oxidation-Reduction , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...