Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Genet ; 92(5): 517-527, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28632965

ABSTRACT

Familial microscopic hematuria (FMH) is associated with a genetically heterogeneous group of conditions including the collagen-IV nephropathies, the heritable C3/CFHR5 nephropathy and the glomerulopathy with fibronectin deposits. The clinical course varies widely, ranging from isolated benign familial hematuria to end-stage renal disease (ESRD) later in life. We investigated 24 families using next generation sequencing (NGS) for 5 genes: COL4A3, COL4A4, COL4A5, CFHR5 and FN1. In 17 families (71%), we found 15 pathogenic mutations in COL4A3/A4/A5, 9 of them novel. In 5 families patients inherited classical AS with hemizygous X-linked COL4A5 mutations. Even more patients developed later-onset Alport-related nephropathy having inherited heterozygous COL4A3/A4 mutations that cause thin basement membranes. Amongst 62 heterozygous or hemizygous patients, 8 (13%) reached ESRD, while 25% of patients with heterozygous COL4A3/A4 mutations, aged >50-years, reached ESRD. In conclusion, COL4A mutations comprise a frequent cause of FMH. Heterozygous COL4A3/A4 mutations predispose to renal function impairment, supporting that thin basement membrane nephropathy is not always benign. The molecular diagnosis is essential for differentiating the X-linked from the autosomal recessive and dominant inheritance. Finally, NGS technology is established as the gold standard for the diagnosis of FMH and associated collagen-IV glomerulopathies, frequently averting the need for invasive renal biopsies.


Subject(s)
Collagen Type IV/genetics , Glomerulosclerosis, Focal Segmental/genetics , Hematuria/genetics , Mutation/genetics , Nephritis, Hereditary/genetics , Adult , Age of Onset , Aged , Aged, 80 and over , Family , Female , Glomerular Basement Membrane/pathology , Glomerular Basement Membrane/ultrastructure , Glomerulosclerosis, Focal Segmental/complications , Hematuria/complications , High-Throughput Nucleotide Sequencing , Humans , Male , Middle Aged , Nephritis, Hereditary/complications , Pedigree , Penetrance , Young Adult
2.
Clin Genet ; 84(6): 539-45, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23320472

ABSTRACT

Recently, pathogenic variants in the MLL2 gene were identified as the most common cause of Kabuki (Niikawa-Kuroki) syndrome (MIM#147920). To further elucidate the genotype-phenotype correlation, we studied a large cohort of 86 clinically defined patients with Kabuki syndrome (KS) for mutations in MLL2. All patients were assessed using a standardized phenotype list and all were scored using a newly developed clinical score list for KS (MLL2-Kabuki score 0-10). Sequencing of the full coding region and intron-exon boundaries of MLL2 identified a total of 45 likely pathogenic mutations (52%): 31 nonsense, 10 missense and four splice-site mutations, 34 of which were novel. In five additional patients, novel, i.e. non-dbSNP132 variants of clinically unknown relevance, were identified. Patients with likely pathogenic nonsense or missense MLL2 mutations were usually more severely affected (median 'MLL2-Kabuki score' of 6) as compared to the patients without MLL2 mutations (median 'MLL2-Kabuki score' of 5), a significant difference (p < 0.0014). Several typical facial features such as large dysplastic ears, arched eyebrows with sparse lateral third, blue sclerae, a flat nasal tip with a broad nasal root, and a thin upper and a full lower lip were observed more often in mutation positive patients.


Subject(s)
Abnormalities, Multiple/diagnosis , Abnormalities, Multiple/genetics , DNA-Binding Proteins/genetics , Face/abnormalities , Genetic Association Studies , Hematologic Diseases/diagnosis , Hematologic Diseases/genetics , Mutation , Neoplasm Proteins/genetics , Vestibular Diseases/diagnosis , Vestibular Diseases/genetics , Facies , Female , Humans , Male , Phenotype , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...