Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Opt Express ; 31(5): 8217-8225, 2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36859938

ABSTRACT

We report on far field energy distribution control using a coherent beam combining femtosecond digital laser employing 61 tiled channels. Each channel is considered as an individual pixel where amplitude and phase are controlled independently. Applying a phase difference between neighboring fibers or neighboring fiber-lines gives high agility for far field energy distribution and paves the way for deeper exploration of phase patterns as a tool to further improve tiled-aperture CBC laser efficiency and far field shaping on demand.

2.
Appl Opt ; 61(27): 7846-7851, 2022 Sep 20.
Article in English | MEDLINE | ID: mdl-36255898

ABSTRACT

One of the most promising solutions to access high power laser chains is to achieve a coherent combination of a large number of elementary lasers. To interfere constructively, these laser sources should be identical and operate under the same conditions. However, despite these efforts, differential delays appear in the course of time, which must be compensated for. While designing the required correction system, knowing the behavior of a laser as a function of the environmental conditions is not crucial, whereas having access to the differences in the behaviors of identical lasers is, leading to difficulties in modeling. The purpose of this paper is to illustrate how a large set of lasers can be simultaneously analyzed to estimate their variations and optimize a correction system. The X-Coherent Amplified Network laser relies on 61 fiber amplifiers, which are as identical as possible. This state of the art femtosecond digital laser therefore appears as an ideal candidate to study a large number of fiber lasers working under controlled conditions.

3.
Opt Lett ; 46(1): 25-28, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33362004

ABSTRACT

We report on the use of a 61 beamlets coherent beam combination femtosecond fiber amplifiers as a digital laser source to generate high-power orbital angular momentum beams. Such an approach opens the path for higher-order non-symmetrical user-defined far field distributions.

4.
Opt Express ; 28(14): 20152-20161, 2020 Jul 06.
Article in English | MEDLINE | ID: mdl-32680081

ABSTRACT

We report on the coherent beam combining of 61 femtosecond fiber chirped-pulse amplifiers in a tiled-aperture configuration along with an interferometric phase measurement technique. Relying on coherent beam recombination in the far field, this technique appears suitable for the combination of a large number of fiber amplifiers. The 61 output beams are stacked in a hexagonal arrangement and collimated through a high fill factor hexagonal micro-lens array. The residual phase error between two fibers is as low as λ/90 RMS, while a combining efficiency of ∼50% is achieved.

5.
Opt Lett ; 43(18): 4546-4549, 2018 Sep 15.
Article in English | MEDLINE | ID: mdl-30211912

ABSTRACT

We experimentally investigate the evolution of the direct detection noise figure of a nondegenerate phase-sensitive amplifier based on a nonlinear fiber, as a function of the relative phase between the signal, idler, and pump, all other parameters remaining fixed. The use of a fiber with a high stimulated Brillouin scattering threshold permits us to investigate the full range of phase-sensitive gain and noise figure without pump dithering. Good agreement is found with theory, both for signal only and combined signal and idler direct detections.

6.
Opt Lett ; 43(8): 1794-1797, 2018 Apr 15.
Article in English | MEDLINE | ID: mdl-29652366

ABSTRACT

An ultra-low intensity and beatnote phase noise dual-frequency vertical-external-cavity surface-emitting laser is built at telecom wavelength. The pump laser is realized by polarization combining two single-mode fibered laser diodes in a single-mode fiber, leading to a 100% in-phase correlation of the pump noises for the two modes. The relative intensity noise is lower than -140 dB/Hz, and the beatnote phase noise is suppressed by 30 dB, getting close to the spontaneous emission limit. The role of the imperfect cancellation of the thermal effect resulting from unbalanced pumping of the two modes in the residual phase noise is evidenced.

7.
Opt Express ; 26(24): 31542-31553, 2018 Nov 26.
Article in English | MEDLINE | ID: mdl-30650738

ABSTRACT

Coherent beam combining in tiled-aperture configuration is demonstrated on seven femtosecond fiber amplifiers using an interferometric phase measurement technique. The residual phase error between two fibers is as low as λ/55 RMS and a combination efficiency of 48% has been achieved. The combined pulses are compressed to 216 fs, delivering 71 W average power at a repetition rate of 55 MHz. Operating the laser system in a nonlinear regime with an estimated B-integral of 5 rad yields a combining efficiency of 45% with the same phase stability. These results pave the way to very large high-power and high energy coherent beam combining systems.

8.
Opt Express ; 25(11): 12552-12565, 2017 May 29.
Article in English | MEDLINE | ID: mdl-28786611

ABSTRACT

We present a thorough investigation aimed at the optimization of a phase-sensitive optical parametric amplifier capable of simultaneous phase and amplitude regeneration. The regeneration potential, quantified in terms of the phase-sensitive extinction ratio, has been carefully assessed by a scalar model involving high-order waves associated with high-order four-wave mixing processes, going beyond the usual three-wave approach. Additionally, this model permits to unveil the physics involved in the high-order waves assisted regeneration. This permits a multi-dimensional and comprehensive optimization that fully exploits the underlying regenerative capability and expedites the design of a transparent regenerator, showing the potential to act as basic building block in future all-optical processing. We also compare different strategies when such regenerators are configured in concatenation. The approach can be readily applied to virtually any similar applications for different all-optical processing functionalities.

9.
Opt Express ; 23(25): 31896-907, 2015 Dec 14.
Article in English | MEDLINE | ID: mdl-26698981

ABSTRACT

Operation of a degenerate dual-pump phase sensitive amplifier (PSA) is thoroughly numerically investigated using a multi-wave model, taking into account high-order waves associated with undesired four-wave mixing (FWM) processes. More accurate phase-sensitive signal gain characteristics are obtained compared to the conventional 3-wave model, leading to precise optimization of the pump configuration in a degenerate dual-pump PSA. The signal gain for different pump configurations, as well as the phase sensitivity, is obtained and interpreted by investigating the dominant FWM processes in terms of the corresponding phase matching. Moreover, the relation between dispersion slope and the width of the signal gain curve versus the pump-pump wavelength separation is revealed, permitting the application-oriented arbitrary tailoring of the signal gains by manipulating the dispersion profile and pump wavelength allocation.

10.
Opt Express ; 19(14): 13525-30, 2011 Jul 04.
Article in English | MEDLINE | ID: mdl-21747507

ABSTRACT

We demonstrate a single-polarization all-solid hybrid microstructured optical fiber with a UV-induced Bragg grating. A strong (∼20 dB) UV-induced Bragg grating was inscribed within the 30 nm-wide single-polarization window of the fiber, producing polarized Bragg reflection. The sharp band-edge cutoff allows a large polarization-extinction ratio of the Bragg reflection. The hybrid structure of the fiber enabled minimal UV exposure to the high-index regions and the location of the single-polarization window was maintained after the grating was inscribed.


Subject(s)
Fiber Optic Technology/instrumentation , Refractometry/instrumentation , Equipment Design , Equipment Failure Analysis , Miniaturization , Systems Integration , Ultraviolet Rays
11.
Appl Opt ; 46(4): 456-62, 2007 Feb 01.
Article in English | MEDLINE | ID: mdl-17230236

ABSTRACT

We demonstrate that direct sequence optical code- division multiple-access (DS-OCDMA) encoders and decoders using sampled fiber Bragg gratings (S-FBGs) behave as multipath interferometers. In that case, chip pulses of the prime sequence codes generated by spreading in time-coherent data pulses can result from multiple reflections in the interferometers that can superimpose within a chip time duration. We show that the autocorrelation function has to be considered as the sum of complex amplitudes of the combined chip as the laser source coherence time is much greater than the integration time of the photodetector. To reduce the sensitivity of the DS-OCDMA system to the coherence time of the laser source, we analyze the use of sparse and nonperiodic quadratic congruence and extended quadratic congruence codes.

SELECTION OF CITATIONS
SEARCH DETAIL
...