Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Nat Commun ; 15(1): 1823, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38418463

ABSTRACT

In this phase II, single arm trial (ACTRN12617000720314), we investigate if alternating osimertinib and gefitinib would delay the development of resistance to osimertinib in advanced, non-small cell lung cancer (NSCLC) with the epidermal growth factor receptor (EGFR) T790M mutation (n = 47) by modulating selective pressure on resistant clones. The primary endpoint is progression free-survival (PFS) rate at 12 months, and secondary endpoints include: feasibility of alternating therapy, overall response rate (ORR), overall survival (OS), and safety. The 12-month PFS rate is 38% (95% CI 27.5-55), not meeting the pre-specified primary endpoint. Serial circulating tumor DNA (ctDNA) analysis reveals decrease and clearance of the original activating EGFR and EGFR-T790M mutations which are prognostic of clinical outcomes. In 73% of participants, loss of T790M ctDNA is observed at progression and no participants have evidence of the EGFR C797S resistance mutation following the alternating regimen. These findings highlight the challenges of treatment strategies designed to modulate clonal evolution and the clinical importance of resistance mechanisms beyond suppression of selected genetic mutations in driving therapeutic escape to highly potent targeted therapies.


Subject(s)
Acrylamides , Carcinoma, Non-Small-Cell Lung , Indoles , Lung Neoplasms , Pyrimidines , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Gefitinib/therapeutic use , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , ErbB Receptors/genetics , Mutation , Protein Kinase Inhibitors/adverse effects , Aniline Compounds/therapeutic use
2.
Cancer Discov ; 12(9): 2058-2073, 2022 09 02.
Article in English | MEDLINE | ID: mdl-35771551

ABSTRACT

There is limited knowledge on the benefit of the α-subunit-specific PI3K inhibitor alpelisib in later lines of therapy for advanced estrogen receptor-positive (ER+) HER2- and triple-negative breast cancer (TNBC). We conducted a phase II multicohort study of alpelisib monotherapy in patients with advanced PI3K pathway mutant ER+HER2- and TNBC. In the intention-to-treat ER+ cohort, the overall response rate was 30% and the clinical benefit rate was 36%. A decline in PI3K pathway mutant circulating tumor DNA (ctDNA) levels from baseline to week 8 while on therapy was significantly associated with a partial response, clinical benefit, and improved progression-free-survival [HR 0.24; 95% confidence interval (CI), 0.083-0.67, P = 0.0065]. Detection of ESR1 mutations at baseline in plasma was also associated with clinical benefit and improved progression-free survival (HR 0.22; 95% CI, 0.078-0.60, P = 0.003). SIGNIFICANCE: Alpelisib monotherapy displayed efficacy in heavily pretreated ER+ breast cancer with PIK3CA mutations. PIK3CA mutation dynamics in plasma during treatment and ESR1 mutations detected in plasma at baseline were candidate biomarkers predictive of benefit from alpelisib, highlighting the utility of ctDNA assays in this setting. This article is highlighted in the In This Issue feature, p. 2007.


Subject(s)
Breast Neoplasms , Triple Negative Breast Neoplasms , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Class I Phosphatidylinositol 3-Kinases/genetics , Female , Humans , Mutation , Phosphatidylinositol 3-Kinases/genetics , Receptor, ErbB-2/genetics , Thiazoles , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics
3.
Nat Med ; 27(6): 1006-1011, 2021 06.
Article in English | MEDLINE | ID: mdl-34099923

ABSTRACT

People with human immunodeficiency virus (HIV) have higher rates of certain comorbidities, particularly cardiovascular disease and cancer, than people without HIV1-5. In view of observations that somatic mutations associated with age-related clonal hematopoiesis (CH) are linked to similar comorbidities in the general population6-10, we hypothesized that CH may be more prevalent in people with HIV. To address this issue, we established a prospective cohort study, the ARCHIVE study (NCT04641013), in which 220 HIV-positive and 226 HIV-negative participants aged 55 years or older were recruited in Australia. Demographic characteristics, clinical data and peripheral blood were collected to assess the presence of CH mutations and to identify potential risk factors for and clinical sequelae of CH. In total, 135 CH mutations were identified in 100 (22.4%) of 446 participants. CH was more prevalent in HIV-positive participants than in HIV-negative participants (28.2% versus 16.8%, P = 0.004), overall and across all age groups; the adjusted odds ratio for having CH in those with HIV was 2.16 (95% confidence interval 1.34-3.48, P = 0.002). The most common genes mutated overall were DNMT3A (47.4%), TET2 (20.0%) and ASXL1 (13.3%). CH and HIV infection were independently associated with increases in blood parameters and biomarkers associated with inflammation. These data suggest a selective advantage for the emergence of CH in the context of chronic infection and inflammation related to HIV infection.


Subject(s)
Cardiovascular Diseases/genetics , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA-Binding Proteins/genetics , HIV Infections/genetics , Proto-Oncogene Proteins/genetics , Repressor Proteins/genetics , Aged , Aging/genetics , Aging/pathology , Cardiovascular Diseases/complications , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/virology , Clonal Hematopoiesis/genetics , DNA Methyltransferase 3A , Dioxygenases , Female , HIV/pathogenicity , HIV Infections/complications , HIV Infections/epidemiology , HIV Infections/virology , Humans , Inflammation/genetics , Inflammation/pathology , Inflammation/virology , Male , Middle Aged , Mutation/genetics , Neoplasms/complications , Neoplasms/epidemiology , Neoplasms/genetics , Neoplasms/virology
4.
Genome Biol ; 22(1): 187, 2021 06 23.
Article in English | MEDLINE | ID: mdl-34162397

ABSTRACT

BACKGROUND: The human microbiome plays an important role in cancer. Accumulating evidence indicates that commensal microbiome-derived DNA may be represented in minute quantities in the cell-free DNA of human blood and could possibly be harnessed as a new cancer biomarker. However, there has been limited use of rigorous experimental controls to account for contamination, which invariably affects low-biomass microbiome studies. RESULTS: We apply a combination of 16S-rRNA-gene sequencing and droplet digital PCR to determine if the specific detection of cell-free microbial DNA (cfmDNA) is possible in metastatic melanoma patients. Compared to matched stool and saliva samples, the absolute concentration of cfmDNA is low but significantly above the levels detected from negative controls. The microbial community of plasma is strongly influenced by laboratory and reagent contaminants introduced during the DNA extraction and sequencing processes. Through the application of an in silico decontamination strategy including the filtering of amplicon sequence variants (ASVs) with batch dependent abundances and those with a higher prevalence in negative controls, we identify known gut commensal bacteria, such as Faecalibacterium, Bacteroides and Ruminococcus, and also other uncharacterised ASVs. We analyse additional plasma samples, highlighting the potential of this framework to identify differences in cfmDNA between healthy and cancer patients. CONCLUSIONS: Together, these observations indicate that plasma can harbour a low yet detectable level of cfmDNA. The results highlight the importance of accounting for contamination and provide an analytical decontamination framework to allow the accurate detection of cfmDNA for future biomarker studies in cancer and other diseases.


Subject(s)
Cell-Free Nucleic Acids/genetics , DNA, Bacterial/genetics , Melanoma/microbiology , Microbiota/genetics , Skin Neoplasms/microbiology , Bacteroides/classification , Bacteroides/genetics , Bacteroides/isolation & purification , Cell-Free Nucleic Acids/blood , DNA Contamination , DNA, Bacterial/blood , Faecalibacterium/classification , Faecalibacterium/genetics , Faecalibacterium/isolation & purification , Feces/microbiology , Humans , Melanoma/diagnosis , Melanoma/pathology , Neoplasm Metastasis , Neoplasm Staging , Polymerase Chain Reaction/methods , RNA, Ribosomal, 16S/genetics , Ruminococcus/classification , Ruminococcus/genetics , Ruminococcus/isolation & purification , Saliva/microbiology , Skin Neoplasms/diagnosis , Skin Neoplasms/pathology , Symbiosis/physiology
5.
PLoS Med ; 17(10): e1003363, 2020 10.
Article in English | MEDLINE | ID: mdl-33001984

ABSTRACT

BACKGROUND: Metastatic breast cancer (mBC) is a heterogenous disease with increasing availability of targeted therapies as well as emerging genomic markers of therapeutic resistance, necessitating timely and accurate molecular characterization of disease. As a minimally invasive test, analysis of circulating tumour DNA (ctDNA) is well positioned for real-time genomic profiling to guide treatment decisions. Here, we report the results of a prospective testing program established to assess the feasibility of ctDNA analysis to guide clinical management of mBC patients. METHODS AND FINDINGS: Two hundred thirty-four mBC patients (median age 54 years) were enrolled between June 2015 and October 2018 at the Peter MacCallum Cancer Centre, Melbourne, Australia. Median follow-up was 15 months (range 1-46). All patient samples at the time of enrolment were analysed in real time for the presence of somatic mutations. Longitudinal plasma testing during the course of patient management was also undertaken in a subset of patients (n = 67, 28.6%), according to clinician preference, for repeated molecular profiling or disease monitoring. Detection of somatic mutations from patient plasma was performed using a multiplexed droplet digital PCR (ddPCR) approach to identify hotspot mutations in PIK3CA, ESR1, ERBB2, and AKT1. In parallel, subsets of samples were also analysed via next-generation sequencing (targeted panel sequencing and low-coverage whole-genome sequencing [LC-WGS]). The sensitivity of ddPCR and targeted panel sequencing to identify actionable mutations was compared. Results were discussed at a multidisciplinary breast cancer meeting prior to treatment decisions. ddPCR and targeted panel sequencing identified at least 1 actionable mutation at baseline in 80/234 (34.2%) and 62/159 (39.0%) of patients tested, respectively. Combined, both methods detected an actionable alteration in 104/234 patients (44.4%) through baseline or serial ctDNA testing. LC-WGS was performed on 27 patients from the cohort, uncovering several recurrently amplified regions including 11q13.3 encompassing CCND1. Increasing ctDNA levels were associated with inferior overall survival, whether assessed by ddPCR, targeted sequencing, or LC-WGS. Overall, the ctDNA results changed clinical management in 40 patients including the direct recruitment of 20 patients to clinical trials. Limitations of the study were that it was conducted at a single site and that 31.3% of participants were lost to follow-up. CONCLUSION: In this study, we found prospective ctDNA testing to be a practical and feasible approach that can guide clinical trial enrolment and patient management in mBC.


Subject(s)
Breast Neoplasms/genetics , Circulating Tumor DNA/genetics , Neoplasm Metastasis/genetics , Australia , Biomarkers, Tumor/blood , Cell-Free Nucleic Acids/genetics , Circulating Tumor DNA/blood , Class I Phosphatidylinositol 3-Kinases/genetics , Cohort Studies , Estrogen Receptor alpha/genetics , Female , Genomics/methods , High-Throughput Nucleotide Sequencing/methods , Humans , Middle Aged , Multiplex Polymerase Chain Reaction/methods , Mutation , Precision Medicine/methods , Proto-Oncogene Proteins c-akt/genetics , Receptor, ErbB-2/genetics
6.
Nat Med ; 25(1): 119-129, 2019 01.
Article in English | MEDLINE | ID: mdl-30455436

ABSTRACT

Ibrutinib plus venetoclax is a highly effective combination in mantle cell lymphoma. However, strategies to enable the evaluation of therapeutic response are required. Our prospective analyses of patients within the AIM study revealed genomic profiles that clearly dichotomized responders and nonresponders. Mutations in ATM were present in most patients who achieved a complete response, while chromosome 9p21.1-p24.3 loss and/or mutations in components of the SWI-SNF chromatin-remodeling complex were present in all patients with primary resistance and two-thirds of patients with relapsed disease. Circulating tumor DNA analysis revealed that these alterations could be dynamically monitored, providing concurrent information on treatment response and tumor evolution. Functional modeling demonstrated that compromise of the SWI-SNF complex facilitated transcriptional upregulation of BCL2L1 (Bcl-xL) providing a selective advantage against ibrutinib plus venetoclax. Together these data highlight important insights into the molecular basis of therapeutic response and provide a model for real-time assessment of innovative targeted therapies.


Subject(s)
Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Chromosomal Proteins, Non-Histone/genetics , Drug Resistance, Neoplasm/genetics , Lymphoma, Mantle-Cell/drug therapy , Lymphoma, Mantle-Cell/genetics , Mutation/genetics , Pyrazoles/therapeutic use , Pyrimidines/therapeutic use , Sulfonamides/therapeutic use , Transcription Factors/genetics , Activating Transcription Factor 3/metabolism , Adenine/analogs & derivatives , Cell Line, Tumor , Chromatin/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Circulating Tumor DNA/genetics , Cohort Studies , DNA Helicases/metabolism , Genome, Human , Humans , Models, Biological , Nuclear Proteins/metabolism , Piperidines , Prognosis , Transcription Factors/metabolism , Treatment Outcome , bcl-X Protein/metabolism
7.
Cancer Discov ; 9(3): 354-369, 2019 03.
Article in English | MEDLINE | ID: mdl-30518523

ABSTRACT

Venetoclax, a potent and selective BCL2 inhibitor, synergizes with endocrine therapy in preclinical models of ER-positive breast cancer. Using a phase Ib 3 + 3 dose-escalation and expansion study design, 33 patients with ER and BCL2-positive metastatic disease (mean prior regimens, 2; range, 0-8) were treated with daily tamoxifen (20 mg) and venetoclax (200-800 mg). Apart from uncomplicated "on-target" lymphopenia, no dose-limiting toxicities or high-grade adverse events were observed in the escalation phase (15 patients), and 800 mg was selected as the recommended phase II dose (RP2D). In the expansion phase (18 patients), few high-grade treatment-related adverse events were observed. For 24 patients treated at the RP2D, the confirmed radiologic response rate was 54% and the clinical benefit rate was 75%. Treatment responses were preempted by metabolic responses (FDG-PET) at 4 weeks and correlated with serial changes in circulating tumor DNA. Radiologic responses (40%) and clinical benefit (70%) were observed in 10 patients with plasma-detected ESR1 mutations. SIGNIFICANCE: In the first clinical study to evaluate venetoclax in a solid tumor, we demonstrate that combining venetoclax with endocrine therapy has a tolerable safety profile and elicits notable activity in ER and BCL2-positive metastatic breast cancer. These findings support further investigation of combination therapy for patients with BCL2-positive tumors.See related commentary by Drago et al., p. 323.This article is highlighted in the In This Issue feature, p. 305.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Breast Neoplasms/drug therapy , Estrogen Receptor alpha/antagonists & inhibitors , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Adult , Aged , Antineoplastic Combined Chemotherapy Protocols/pharmacokinetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Bridged Bicyclo Compounds, Heterocyclic/administration & dosage , Circulating Tumor DNA/analysis , Disease-Free Survival , Dose-Response Relationship, Drug , Drug Administration Schedule , Estrogen Receptor alpha/metabolism , Female , Humans , Middle Aged , Neoplasm Metastasis , Proto-Oncogene Proteins c-bcl-2/metabolism , Sulfonamides/administration & dosage , Tamoxifen/administration & dosage , Tissue Distribution
8.
Nat Commun ; 8: 14756, 2017 03 17.
Article in English | MEDLINE | ID: mdl-28303898

ABSTRACT

Several novel therapeutics are poised to change the natural history of chronic lymphocytic leukaemia (CLL) and the increasing use of these therapies has highlighted limitations of traditional disease monitoring methods. Here we demonstrate that circulating tumour DNA (ctDNA) is readily detectable in patients with CLL. Importantly, ctDNA does not simply mirror the genomic information contained within circulating malignant lymphocytes but instead parallels changes across different disease compartments following treatment with novel therapies. Serial ctDNA analysis allows clonal dynamics to be monitored over time and identifies the emergence of genomic changes associated with Richter's syndrome (RS). In addition to conventional disease monitoring, ctDNA provides a unique opportunity for non-invasive serial analysis of CLL for molecular disease monitoring.


Subject(s)
Circulating Tumor DNA/genetics , Clonal Evolution/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Adenine/analogs & derivatives , Aged , Aged, 80 and over , Antineoplastic Agents/therapeutic use , Ataxia Telangiectasia Mutated Proteins/genetics , Baculoviral IAP Repeat-Containing 3 Protein/genetics , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Circulating Tumor DNA/blood , Disease Progression , Female , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/blood , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Male , Middle Aged , Myeloid Differentiation Factor 88/genetics , Phosphoproteins/genetics , Piperidines , Proto-Oncogene Proteins p21(ras)/genetics , Pyrazoles/therapeutic use , Pyrimidines/therapeutic use , RNA Splicing Factors/genetics , Receptor, Notch1/genetics , Sulfonamides/therapeutic use , Treatment Outcome , Tumor Suppressor Protein p53/genetics
9.
Blood ; 129(12): 1685-1690, 2017 03 23.
Article in English | MEDLINE | ID: mdl-28126926

ABSTRACT

The diagnosis and monitoring of myelodysplastic syndromes (MDSs) are highly reliant on bone marrow morphology, which is associated with substantial interobserver variability. Although azacitidine is the mainstay of treatment in MDS, only half of all patients respond. Therefore, there is an urgent need for improved modalities for the diagnosis and monitoring of MDSs. The majority of MDS patients have either clonal somatic karyotypic abnormalities and/or gene mutations that aid in the diagnosis and can be used to monitor treatment response. Circulating cell-free DNA is primarily derived from hematopoietic cells, and we surmised that the malignant MDS genome would be a major contributor to cell-free DNA levels in MDS patients as a result of ineffective hematopoiesis. Through analysis of serial bone marrow and matched plasma samples (n = 75), we demonstrate that cell-free circulating tumor DNA (ctDNA) is directly comparable to bone marrow biopsy in representing the genomic heterogeneity of malignant clones in MDS. Remarkably, we demonstrate that serial monitoring of ctDNA allows concurrent tracking of both mutations and karyotypic abnormalities throughout therapy and is able to anticipate treatment failure. These data highlight the role of ctDNA as a minimally invasive molecular disease monitoring strategy in MDS.


Subject(s)
DNA, Neoplasm/blood , Drug Monitoring/methods , Myelodysplastic Syndromes/diagnosis , Azacitidine/therapeutic use , Bone Marrow Examination , Clone Cells/pathology , DNA, Neoplasm/genetics , Humans , Karyotyping , Mutation , Myelodysplastic Syndromes/blood , Myelodysplastic Syndromes/drug therapy , Myelodysplastic Syndromes/genetics , Polymerase Chain Reaction
10.
JCO Precis Oncol ; 1: 1-14, 2017 Nov.
Article in English | MEDLINE | ID: mdl-35172485

ABSTRACT

PURPOSE: Circulating tumor DNA (ctDNA) allows noninvasive disease monitoring across a range of malignancies. In metastatic melanoma, the extent to which ctDNA reflects changes in metabolic disease burden assessed by 18F-labeled fluorodeoxyglucose positron emission tomography (FDG-PET) is unknown. We assessed the role of ctDNA analysis in combination with FDG-PET to monitor tumor burden and genomic heterogeneity throughout treatment. PATIENTS AND METHODS: We performed a comprehensive analysis of serial ctDNA and FDG-PET in 52 patients who received systemic therapy for metastatic melanoma. Next-generation sequencing and digital polymerase chain reaction were used to analyze plasma samples from the cohort. RESULTS: ctDNA levels were monitored across patients with mutant BRAF, NRAS, and BRAF/NRAS wild type disease. Mutant BRAF and NRAS ctDNA levels correlated closely with changes in metabolic disease burden throughout treatment. TERT promoter mutant ctDNA levels also paralleled changes in tumor burden, which provide an alternative marker for disease monitoring. Of note, subcutaneous and cerebral disease sites were not well represented in plasma. Early changes in ctDNA and metabolic disease burden were important indicators of treatment response. Patients with an early decrease in ctDNA post-treatment had improved progression-free survival compared with patients in whom ctDNA levels remained unchanged or increased over time (hazard ratio, 2.6; P = .05). ctDNA analysis contributed key molecular information through the identification of putative resistance mechanisms to targeted therapy. A detailed comparison of the genomic architecture of plasma and multiregional tumor biopsy specimens at autopsy revealed the ability of ctDNA to comprehensively capture genomic heterogeneity across multiple disease sites. CONCLUSION: The findings highlight the powerful role of ctDNA in metastatic melanoma as a complementary modality to functional imaging that allows real-time monitoring of both tumor burden and genomic changes throughout therapy.

11.
Nat Struct Mol Biol ; 23(7): 673-81, 2016 07.
Article in English | MEDLINE | ID: mdl-27294782

ABSTRACT

Targeted therapies against disruptor of telomeric silencing 1-like (DOT1L) and bromodomain-containing protein 4 (BRD4) are currently being evaluated in clinical trials. However, the mechanisms by which BRD4 and DOT1L regulate leukemogenic transcription programs remain unclear. Using quantitative proteomics, chemoproteomics and biochemical fractionation, we found that native BRD4 and DOT1L exist in separate protein complexes. Genetic disruption or small-molecule inhibition of BRD4 and DOT1L showed marked synergistic activity against MLL leukemia cell lines, primary human leukemia cells and mouse leukemia models. Mechanistically, we found a previously unrecognized functional collaboration between DOT1L and BRD4 that is especially important at highly transcribed genes in proximity to superenhancers. DOT1L, via dimethylated histone H3 K79, facilitates histone H4 acetylation, which in turn regulates the binding of BRD4 to chromatin. These data provide new insights into the regulation of transcription and specify a molecular framework for therapeutic intervention in this disease with poor prognosis.


Subject(s)
Gene Expression Regulation, Leukemic , Histones/genetics , Leukemia, Biphenotypic, Acute/genetics , Methyltransferases/genetics , Nuclear Proteins/genetics , Transcription Factors/genetics , Acetylation , Animals , B-Lymphocytes/metabolism , B-Lymphocytes/pathology , Cell Cycle Proteins , Cell Proliferation , Chromatin/chemistry , Chromatin/metabolism , Clinical Trials as Topic , Disease Models, Animal , Female , Histone-Lysine N-Methyltransferase , Histones/metabolism , Humans , Leukemia, Biphenotypic, Acute/metabolism , Leukemia, Biphenotypic, Acute/pathology , Male , Methyltransferases/antagonists & inhibitors , Methyltransferases/metabolism , Mice , Mice, Inbred C57BL , Nuclear Proteins/antagonists & inhibitors , Nuclear Proteins/metabolism , Primary Cell Culture , Protein Binding , Proteomics/methods , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Signal Transduction , T-Lymphocytes/metabolism , T-Lymphocytes/pathology , Transcription Factors/antagonists & inhibitors , Transcription Factors/metabolism , Transcription, Genetic
12.
Nature ; 525(7570): 538-42, 2015 Sep 24.
Article in English | MEDLINE | ID: mdl-26367796

ABSTRACT

Bromodomain and extra terminal protein (BET) inhibitors are first-in-class targeted therapies that deliver a new therapeutic opportunity by directly targeting bromodomain proteins that bind acetylated chromatin marks. Early clinical trials have shown promise, especially in acute myeloid leukaemia, and therefore the evaluation of resistance mechanisms is crucial to optimize the clinical efficacy of these drugs. Here we use primary mouse haematopoietic stem and progenitor cells immortalized with the fusion protein MLL-AF9 to generate several single-cell clones that demonstrate resistance, in vitro and in vivo, to the prototypical BET inhibitor, I-BET. Resistance to I-BET confers cross-resistance to chemically distinct BET inhibitors such as JQ1, as well as resistance to genetic knockdown of BET proteins. Resistance is not mediated through increased drug efflux or metabolism, but is shown to emerge from leukaemia stem cells both ex vivo and in vivo. Chromatin-bound BRD4 is globally reduced in resistant cells, whereas the expression of key target genes such as Myc remains unaltered, highlighting the existence of alternative mechanisms to regulate transcription. We demonstrate that resistance to BET inhibitors, in human and mouse leukaemia cells, is in part a consequence of increased Wnt/ß-catenin signalling, and negative regulation of this pathway results in restoration of sensitivity to I-BET in vitro and in vivo. Together, these findings provide new insights into the biology of acute myeloid leukaemia, highlight potential therapeutic limitations of BET inhibitors, and identify strategies that may enhance the clinical utility of these unique targeted therapies.


Subject(s)
Benzodiazepines/pharmacology , Drug Resistance, Neoplasm/drug effects , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/metabolism , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/pathology , Nuclear Proteins/antagonists & inhibitors , Transcription Factors/antagonists & inhibitors , Animals , Azepines/pharmacology , Cell Cycle Proteins , Cell Line, Tumor , Cells, Cultured , Chromatin/metabolism , Clone Cells/drug effects , Clone Cells/metabolism , Clone Cells/pathology , Drug Resistance, Neoplasm/genetics , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic/drug effects , Genes, myc/genetics , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/metabolism , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Mice , Molecular Targeted Therapy , Neoplastic Stem Cells/metabolism , Nuclear Proteins/metabolism , Transcription Factors/metabolism , Transcription, Genetic/drug effects , Triazoles/pharmacology , Wnt Signaling Pathway/drug effects , beta Catenin/metabolism
13.
Clin Cancer Res ; 19(21): 5960-71, 2013 Nov 01.
Article in English | MEDLINE | ID: mdl-24004674

ABSTRACT

PURPOSE: Amplification of cyclin E1 (CCNE1) is associated with poor outcome in breast, lung, and other solid cancers, and is the most prominent structural variant associated with primary treatment failure in high-grade serous ovarian cancer (HGSC). We have previously shown that CCNE1-amplified tumors show amplicon-dependent sensitivity to CCNE1 suppression. Here, we explore targeting CDK2 as a novel therapeutic strategy in CCNE1-amplified cancers and mechanisms of resistance. EXPERIMENTAL DESIGN: We examined the effect of CDK2 suppression using RNA interference and small-molecule inhibitors in SK-OV-3, OVCAR-4, and OVCAR-3 ovarian cancer cell lines. To identify mechanisms of resistance, we derived multiple, independent resistant sublines of OVCAR-3 to CDK2 inhibitors. Resistant cells were extensively characterized by gene expression and copy number analysis, fluorescence-activated cell sorting profiling and conventional karyotyping. In addition, we explored the relationship between CCNE1 amplification and polyploidy using data from primary tumors. RESULTS: We validate CDK2 as a therapeutic target in CCNE1-amplified cells by showing selective sensitivity to suppression, either by gene knockdown or using small-molecule inhibitors. In addition, we identified two resistance mechanisms, one involving upregulation of CDK2 and another novel mechanism involving selection of polyploid cells from the pretreatment tumor population. Our analysis of genomic data shows that polyploidy is a feature of cancer genomes with CCNE1 amplification. CONCLUSIONS: These findings suggest that cyclinE1/CDK2 is an important therapeutic target in HGSC, but that resistance to CDK2 inhibitors may emerge due to upregulation of CDK2 target protein and through preexisting cellular polyploidy.


Subject(s)
Cyclin E/genetics , Cyclin-Dependent Kinase 2/antagonists & inhibitors , Drug Resistance, Neoplasm/genetics , Gene Amplification , Oncogene Proteins/genetics , Ovarian Neoplasms/genetics , Polyploidy , Protein Kinase Inhibitors/pharmacology , Cell Line, Tumor , Cell Survival/genetics , Cluster Analysis , Cyclin-Dependent Kinase 2/genetics , Cyclin-Dependent Kinase 2/metabolism , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Ovarian Neoplasms/metabolism , Pyrazoles/pharmacology , Pyrrolidinones/pharmacology
14.
Cancer Res ; 72(16): 4060-73, 2012 Aug 15.
Article in English | MEDLINE | ID: mdl-22896685

ABSTRACT

High-grade serous cancer (HGSC), the most common subtype of ovarian cancer, often becomes resistant to chemotherapy, leading to poor patient outcomes. Intratumoral heterogeneity occurs in nearly all solid cancers, including ovarian cancer, contributing to the development of resistance mechanisms. In this study, we examined the spatial and temporal genomic variation in HGSC using high-resolution single-nucleotide polymorphism arrays. Multiple metastatic lesions from individual patients were analyzed along with 22 paired pretreatment and posttreatment samples. We documented regions of differential DNA copy number between multiple tumor biopsies that correlated with altered expression of genes involved in cell polarity and adhesion. In the paired primary and relapse cohort, we observed a greater degree of genomic change in tumors from patients that were initially sensitive to chemotherapy and had longer progression-free interval compared with tumors from patients that were resistant to primary chemotherapy. Notably, deletion or downregulation of the lipid transporter LRP1B emerged as a significant correlate of acquired resistance in our analysis. Functional studies showed that reducing LRP1B expression was sufficient to reduce the sensitivity of HGSC cell lines to liposomal doxorubicin, but not to doxorubicin, whereas LRP1B overexpression was sufficient to increase sensitivity to liposomal doxorubicin. Together, our findings underscore the large degree of variation in DNA copy number in spatially and temporally separated tumors in HGSC patients, and they define LRP1B as a potential contributor to the emergence of chemotherapy resistance in these patients.


Subject(s)
Cystadenocarcinoma, Serous/drug therapy , Doxorubicin/pharmacology , Ovarian Neoplasms/drug therapy , Receptors, LDL/deficiency , Receptors, LDL/genetics , Aged , Cell Growth Processes/genetics , Cell Line, Tumor , Chromosome Aberrations , Chromosomes, Human, Pair 10 , Chromosomes, Human, Pair 2 , Chromosomes, Human, X , Cystadenocarcinoma, Serous/genetics , Cystadenocarcinoma, Serous/metabolism , Cystadenocarcinoma, Serous/pathology , DNA, Neoplasm , Down-Regulation , Drug Resistance, Neoplasm , Female , Gene Deletion , Gene Dosage , Gene Expression , Gene Knockdown Techniques , Humans , Middle Aged , Neoplasm Grading , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/genetics , Receptors, LDL/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...