Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Pollut ; 346: 123596, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38369097

ABSTRACT

Further improving the quality of surface water is becoming more difficult after the control of main point-sources, especially in the complex pollution area with mixed industrial and agricultural productions, whereas the pollution source apportionment might be the key to quantify different pollution sources and developing some effective measures. In this study, a technical framework for source apportionment based on three-dimensional fluorescence and microbial traceability model is developed. Based on screening of the main environmental factors and their spatiotemporal characteristics, potential pollution sources have been tentatively identified. Then, the pollution sources are further tested based on the analysis of fluorescence excitation-emission matrix (EEM) and the similarity of fluorescence components in surface water and potential pollution sources. At the same time, the correlation between microbial species and pollution sources is constructed by analyzing the spatiotemporal characteristics of microbial composition and the response of main species to environmental factors. Therefore, pollution source apportionment is quantified using PCA-APCS-MLR, Fast Expectation-maximization for Microbial Source Tracking (FEAST), and Bayesian community-wide culture-independent microbial source tracking (SourceTracker). PCA-APCS-MLR could not effectively distinguish the contributions of different industrial sources in the complex environment of this study, and the contribution of unknown sources was high (average 39.60%). In contrast, the microbial traceability model can accurately identify the contribution of 7 pollution sources and natural sources, effectively reduce the proportion of unknown sources (average of FEAST is 19.81%, SourceTracker is 16.72%), and show better pollution identification and distribution capabilities. FEAST exhibits a more sensitive potential in source apportionment and shorter calculation time than SourceTracker, thus might be used to guide the precise regional pollution control, especially in the complex pollution environments.


Subject(s)
Environmental Monitoring , Rivers , Environmental Monitoring/methods , Bayes Theorem , China , Water
2.
Bioresour Technol ; 368: 128324, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36400276

ABSTRACT

After several rounds of milling process for sugars extraction from sugarcane, certain amounts of water-soluble carbohydrates (WSC) still remain in sugarcane bagasse. It is a bottleneck to utilize WSC in sugarcane bagasse biorefinery, since these sugars are easily degraded into inhibitors during pretreatment. Herein, a simple pre-fermentation step before pretreatment was conducted, and 98 % of WSC in bagasse was fermented into d-lactic acid. The obtained d-lactic acid was stably preserved in bagasse and 5-hydroxymethylfurfural (HMF) generation was sharply reduced from 46.0 mg/g to 6.2 mg/g of dry bagasse, after dilute acid pretreatment. Consequently, a higher d-lactic acid titer (57.0 g/L vs 33.2 g/L) was achieved from the whole slurry of the undetoxified and pretreated sugarcane bagasse by one-pot simultaneous saccharification and co-fermentation (SSCF), with the overall yield of 0.58 g/g dry bagasse. This study gave an efficient strategy for enhancing lactic acid production using the lignocellulosic waste from sugar industry.


Subject(s)
Saccharum , Cellulose , Lactic Acid , Fermentation , Water , Hexoses , Edible Grain
3.
Materials (Basel) ; 15(19)2022 Oct 10.
Article in English | MEDLINE | ID: mdl-36234351

ABSTRACT

For a hydrogenation heat exchanger operating under severe working conditions such as high temperature, high pressure and a hydrogen environment, perforation accidents caused by NH4Cl corrosion occur frequently. However, few reports on the effect of hydrogen on the corrosion behavior of metal materials in NH4Cl aqueous solution have been published. In this paper, X-ray photoelectron spectroscopy (XPS), electrochemical dynamic potential polarization, electrochemical impedance spectroscopy (EIS), Mott-Schottky (M-S) curves and scanning electron microscopy (SEM) were used to study the effect of electrochemical hydrogen charging (EHC) on the corrosion behavior of 321 stainless steel in an NH4Cl solution environment. The results show that: (1) hydrogen can change the structure and chemical composition of 321 stainless steel passive film and promote the conversion of metal oxide to hydroxide. At the same time, it can reduce the stability of the passive film. (2) Hydrogen can increase the thermodynamic and kinetic tendency of corrosion reaction and cooperate with Cl- to promote the occurrence of pitting corrosion.

4.
Nanomaterials (Basel) ; 12(13)2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35808085

ABSTRACT

Herein, the curing kinetics and the glass transition temperature (Tg) of MXene/phenolic epoxy composites with two curing agents, i.e., 4,4-diaminodiphenyl sulfone (DDS) and dicyandiamine (DICY), are systematically investigated using experimental characterization, mathematical modeling and molecular dynamics simulations. The effect of MXene content on an epoxy resin/amine curing agent system is also studied. These results reveal that the MXene/epoxy composites with both curing agent systems conform to the SB(m,n) two-parameter autocatalytic model. The addition of MXene accelerated the curing of the epoxy composite and increased the Tg by about 20 K. In addition, molecular dynamics were used to simulate the Tg of the cross-linked MXene/epoxy composites and to analyze microstructural features such as the free volume fraction (FFV). The simulation results show that the introduction of MXene improves the Tg and FFV of the simulated system. This is because the introduction of MXene restricts the movement of the epoxy/curing agent system. The conclusions are in good agreement with the experimental results.

5.
Materials (Basel) ; 15(3)2022 Feb 04.
Article in English | MEDLINE | ID: mdl-35161138

ABSTRACT

The working environment for tubing in oil and gas fields is becoming more and more serious due to the exploration of unconventional oil and gas resources, leading to the increasing need for a protective internal coating to be used in tubing. Therefore, a new mica-graphene/epoxy composite coating with different graphene contents (0.0, 0.2, 0.5, 0.7, and 1.0 wt.%) was prepared to improve the tubing resistance to a corrosive medium, an autoclave was used to simulate the working environment, and an electrochemical workstation assisted by three-electrodes was used to study the electrochemical characteristics of the coating. The results showed that the addition of a certain amount of graphene into the mica/epoxy coating significantly improved the corrosion resistance of the composite coating, and when the graphene content increased, the corrosion resistance of the mica/epoxy coating first increased and then decreased when the corrosion current density of a 35 wt.% 800# mica/epoxy coating with a 0.7 wt.% graphene content was the lowest (7.11 × 10-13 A·cm-2), the corrosion potential was the highest (292 mV), the polarization resistance was the largest (3.463 × 109 Ω·cm2), and the corrosion resistance was improved by 89.3% compared to the coating without graphene. Furthermore, the adhesion of the coating with 0.7 wt.% graphene was also the largest (8.81 MPa, increased by 3.4%) and had the smallest diffusion coefficient (1.566 × 107 cm2·s-1, decreased by 76.1%), and the thermal stability improved by 18.6%. Finally, the corrosion resistance mechanism of the composite coating with different graphene contents at different soaking times was revealed based on the electrochemistry and morphology characteristics other than water absorption and contact angle.

6.
J Colloid Interface Sci ; 609: 838-851, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34838315

ABSTRACT

2,5-dihydroxy-1,4-dithiane (DDD) and 2,5-dimethy- [1.4] dithiane-2,5-diol (DTDD) two food flavors as environmentally-friendly inhibitors for Cu in 0.5 mol/L H2SO4 media were researched via theoretical calculation and experimental ways. Electrochemical measurement data showed that DDD and DTDD can exhibit high level anti-corrosion feature. The anti-corrosion efficiency of DDD and DTDD were as high as 99.6% and 98.9%, respectively. The atomic force microscope (AFM) and scanning electron microscope (SEM) tests showed that the Cu specimens were immersed in the H2SO4 with 5 mM DDD and DTDD for 30 h at the 298 K, and the Cu specimen surface was still smooth. Besides, the adsorption of DDD and DTDD at the interface of Cu/solution was comply with Langmuir adsorption. Theoretical calculation data showed that DDD exhibit more ascendant anti-corrosion feature than DTDD.


Subject(s)
Copper , Steel , Corrosion , Sulfuric Acids
7.
Sci Rep ; 10(1): 16291, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-33004856

ABSTRACT

The effect of pre-oxidation on the corrosion behavior of pure Ti covered with a solid NaCl deposit in the humid O2 flow at 600 °C is studied. The oxide scale, formed by pre-oxidation, protects the substrate from the NaCl induced corrosion during the initial stage. However, the corrosion of the pre-oxidized sample is severely accelerated by solid NaCl after an incubation period. The chlorine, generated from the decomposition of solid NaCl, diffuses into the oxide/substrate interface as ions during the incubation period, which was observed by ToF-SIMS. The chlorine at the oxide/substrate interface induces the fast corrosion after the incubation period although the pre-oxidation scale is complete and compact.

SELECTION OF CITATIONS
SEARCH DETAIL
...