Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Aging (Albany NY) ; 16(1): 714-745, 2024 01 11.
Article in English | MEDLINE | ID: mdl-38217544

ABSTRACT

BACKGROUND: Uterine corpus endometrial carcinoma (UCEC) is one of the most common gynecological malignancies and its incidence and mortality continue apace. Lysosome-associated membrane protein 3 (LAMP3) is the third member of the LAMP family and its overexpression has been described to be involved in the progression of breast, ovarian and cervical cancers, but there has been an absence of research focusing on its role in UCEC. METHODS: WGCNA, TIMER, LinkedOmics, GSEA, Cytoscape, Kaplan-Meier plotter, GDC, GeneMANIA, cBioPortal, PDB, RNAinter, miRNet were applied in this research. RESULTS: Our study uncovers that LAMP3 possesses higher expression levels in UCEC compared to normal tissues, and this differential expression profile is tightly aligned with clinical and pathological features, and patients demonstrating high LAMP3 expression tend to have a shorter survival expectancy. The high expression of LAMP3 is modulated by the designated ceRNA network. LAMP3 is engaged in UCEC progression by functioning in a variety of biological roles of relevance to immunity. Furthermore, we predicted several prospering drugs based on drug sensitivity. Finally, we also constructed possible docking patterns of LAMP3 with ABCA3, RAB9A, and SGTB. CONCLUSIONS: LAMP3 is a formidable biomarker for UCEC and could be a prospective candidate for the diagnosis, treatment and prognostic assessment of UCEC.


Subject(s)
Breast , Carcinoma, Endometrioid , Humans , Female , Prognosis , Neoplasm Proteins , Lysosomal-Associated Membrane Protein 3
2.
Aging (Albany NY) ; 15(13): 6179-6211, 2023 07 04.
Article in English | MEDLINE | ID: mdl-37400985

ABSTRACT

Hepatocellular carcinoma (HCC) is an ongoing challenge worldwide. Zinc finger protein 765 (ZNF765) is an important zinc finger protein that is related to the permeability of the blood-tumor barrier. However, the role of ZNF765 in HCC is unclear. This study evaluated the expression of ZNF765 in hepatocellular carcinoma and the impact of its expression on patient prognosis based on The Cancer Genome Atlas (TCGA). Immunohistochemical assays (IHC) were used to examine protein expression. Besides, a colony formation assay was used to examine cell viability. We also explored the relationship between ZNF765 and chemokines in the HCCLM3 cells by qRT-PCR. Moreover, we examined the effect of ZNF765 on cell resistance by measurement of the maximum half-inhibitory concentration. Our research revealed that ZNF765 expression in HCC samples was higher than that in normal samples, whose upregulation was not conducive to the prognosis. The results of GO, KEGG, and GSEA showed that ZNF765 was associated with the cell cycle and immune infiltration. Furthermore, we confirmed that the expression of ZNF765 had a strong connection with the infiltration level of various immune cells, such as B cells, CD4+ T cells, macrophages, and neutrophils. In addition, we found that ZNF765 was associated with m6A modification, which may affect the progression of HCC. Finally, drug sensitivity testing found that patients with HCC were sensitive to 20 drugs when they expressed high levels of ZNF765. In conclusion, ZNF765 may be a prognostic biomarker related to cell cycle, immune infiltration, m6A modification, and drug sensitivity for hepatocellular carcinoma.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Prognosis , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Cell Cycle , Biomarkers
3.
Aging (Albany NY) ; 15(7): 2734-2771, 2023 04 08.
Article in English | MEDLINE | ID: mdl-37059591

ABSTRACT

BACKGROUND: Hepatocellular carcinoma represents the most common primary malignancy of all liver cancer types and its prognosis is usually unsatisfactory. TSEN54 encodes a protein constituting a subunit of the tRNA splicing endonuclease heterotetramer. Previous researches concentrated on the contribution of TSEN54 in pontocerebellar hypoplasia, but no studies have yet reported its role in HCC. METHODS: TIMER, HCCDB, GEPIA, HPA, UALCAN, MEXPRESS, SMART, TargetScan, RNAinter, miRNet, starBase, Kaplan-Meier Plotter, cBioPortal, LinkedOmics, GSEA, TISCH, TISIDB, GeneMANIA, PDB, GSCALite were applied in this research. RESULTS: We identified the upregulation of TSEN54 expression in HCC and related it to multiple clinicopathological features. Hypomethylation of TSEN54 was closely associated with its high expression. HCC sufferers who held high TSEN54 expression typically had shorter survival expectations. Enrichment analysis showed the involvement of TSEN54 in the cell cycle and metabolic processes. Afterward, we observed that TSEN54 expression level had a positive relationship to the infiltration level of multiple immune cells and the expression of several chemokines. We additionally identified that TSEN54 was related to the expression level of several immune checkpoints and TSEN54 was linked to several m6A-related regulators. CONCLUSIONS: TSEN54 is a prognostic marker of HCC. TSEN54 could become a prospective candidate for HCC diagnosis and therapy.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/therapy , Liver Neoplasms/genetics , Cell Cycle , Cell Division , Biomarkers , Prognosis , Biomarkers, Tumor/genetics , Endoribonucleases
4.
Endocrinology ; 164(1)2022 11 14.
Article in English | MEDLINE | ID: mdl-36378561

ABSTRACT

The function and mechanism of SYTL5 in papillary thyroid carcinoma (PTC) are still unclear. In this research, we found that SYTL5 was significantly overexpressed in PTC tissues compared with normal thyroid tissues. SYTL5 downregulation significantly weakened the proliferative, migratory, and invasive abilities of PTC cells. In addition, upregulated SYTL5 could promote cancer progression by activating the NF-κB signaling pathway. RAC1b expression is positively associated with SYTL5, and overexpressed RAC1b abrogated the antitumor effect after SYTL5 inhibition. In conclusion, our findings identify the oncogenic role of SYTL5 in PTC by activation of the NF-κB signaling pathway, thus facilitating PTC development and progression.


Subject(s)
Carrier Proteins , Membrane Proteins , NF-kappa B , Thyroid Neoplasms , Humans , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation , Gene Expression Regulation, Neoplastic , NF-kappa B/metabolism , Signal Transduction , Thyroid Cancer, Papillary/genetics , Thyroid Cancer, Papillary/pathology , Thyroid Neoplasms/pathology , Membrane Proteins/genetics , Carrier Proteins/genetics
5.
Aging (Albany NY) ; 14(20): 8411-8436, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36287187

ABSTRACT

Hepatocellular carcinoma (HCC) is one of the most deadly and common malignant cancers around the world, and the prognosis of HCC patients is not optimistic. ZNF320 belongs to Krüppel like zinc finger gene family. However, no studies have focused on the influence of ZNF320 in HCC. We first analyzed ZNF320 expression in HCC by using data from TCGA and ICGC, then conducted a joint analysis with TIMER and UALCAN, and validated by immunohistochemistry in clinical HCC samples. Then we applied UALCAN to explore the correlation between ZNF320 expression and clinicopathological characteristics. Consequently, using Kaplan-Meier Plotter analysis and the Cox regression, we can predict the prognostic value of ZNF320 for HCC patients. Next, the analysis by GO, KEGG, and GSEA revealed that ZNF320 was significantly correlated to cell cycle and immunity. Finally, TIMER and GEPIA analysis verified that ZNF320 expression is closely related to tumor infiltrating immune cells (TIIC), including B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells. The analysis of the TCGA and ICGC data sets revealed that ZNF320 expression was significantly correlated with m6A related genes (RBMX, YTHDF1, and METTL3). In conclusion, ZNF320 may be a prognostic biomarker related to immunity as a candidate for liver cancer.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Carcinoma, Hepatocellular/pathology , Cell Cycle , Liver Neoplasms/pathology , Methyltransferases , Prognosis , Kruppel-Like Transcription Factors/metabolism
6.
Aging (Albany NY) ; 14(18): 7416-7442, 2022 09 10.
Article in English | MEDLINE | ID: mdl-36098680

ABSTRACT

Kidney renal clear cell carcinoma (KIRC) is a common and invasive subtype of renal tumors, which has poor prognosis and high mortality. MND1 is a meiosis specific protein that participates in the progress of diverse cancers. Nonetheless, its function in KIRC was unclear. Here, TIMER, TCGA, GEO databases and IHC found MND1 expression is upregulated in KIRC, leading to poor overall survival, and MND1 can serve as an independent prognostic factor. Moreover, enrichment analysis revealed the functional relationship between MND1 and cell cycle, immune infiltration. EdU and transwell assays confirmed that MND1 knockdown surely prohibited the proliferation, migration, and invasion of KIRC cells. Additionally, immune analysis showed that MND1 displayed a strong correlation with various immune cells. Interference with MND1 significantly reduces the expression of chemokines. TCGA and GEO databases indicated that MND1 expression is significantly related to two m6A modification related gene (METTL14, IGF2BP3). Finally, the drug sensitivity analysis revealed 7 potentially sensitive drugs for KIRC patients with high MND1 expression. In conclusion, MND1 can be used as a prognostic biomarker for KIRC and provides clues regarding cell cycle, immune infiltrates and m6A. Sensitive drugs may be an effective treatment strategy for KIRC patients with high expression of MND1.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Biomarkers, Tumor/genetics , Carcinoma, Renal Cell/pathology , Cell Cycle , Cell Cycle Proteins/metabolism , Humans , Kidney/pathology , Kidney Neoplasms/pathology , Prognosis
7.
J Hepatocell Carcinoma ; 9: 497-516, 2022.
Article in English | MEDLINE | ID: mdl-35669909

ABSTRACT

Purpose: Hepatocellular carcinoma (HCC) is a malignancy with high incidence, but its prognosis is not optimistic. KRBA1 is a member of the KRAB family and participates in the regulation of gene transcription. However, no studies have focused on the role of KRBA1 in HCC. Patients and Methods: In this study, we first analyzed the expression of KRBA1 in HCC using TCGA and ICGC databases and validated by Immunohistochemistry in clinical HCC samples. The Wilcoxon rank-sum test was used to determine the relationship between KRBA1 expression and clinicopathological features. Subsequently, we used Kaplan-Meier online website analysis and Cox regression model to predict the prognostic value of KRBA1 in HCC patients. Furthermore, the functions of KRBA1 were identified by enrichment analysis. TIMER and GSCALite were used to investigate the relationship between KRBA1 expression in HCC and immune infiltration and drug targets, respectively. Finally, the relationship between KRBA1 expression and m6A modification in HCC was analyzed using the TCGA and ICGA datasets. Results: The results showed that KRBA1 was upregulated in HCC and was associated with many clinicopathological features. High KRBA1 causes poor overall survival and may be an independent risk factor for HCC. KRBA1 tends to be hypermethylated and associated with poor prognosis in HCC compared with normal tissues. Enrichment analysis indicates that KRBA1 is associated with cell cycle and immune processes, and TIMER analysis shows that KRBA1 expression is associated with infiltration levels and immune characteristics of various immune cells. Silenced KRBA1 evidently reduced three chemokine expression in HCC cells. Drug sensitivity analysis showed that KRBA1 was sensitive to 39 drug small molecules. KRBA1 showed a strong positive correlation with five m6A related genes. Conclusion: KRBA1 is a prognostic biomarker associated with HCC immunity and m6a modification, serving as an effective target for the diagnosis and treatment of HCC.

8.
J Cell Mol Med ; 25(23): 10980-10989, 2021 12.
Article in English | MEDLINE | ID: mdl-34773364

ABSTRACT

Deubiquitinating enzyme OTU domain-containing ubiquitin aldehyde-binding proteins 1 (OTUB1) has been shown to have an essential role in multiple carcinomas. However, the function of OTUB1 in papillary thyroid cancer (PTC) and the underlying mechanisms regulating PTC cells proliferation remain poorly understood. In this study, OTUB1 was significantly upregulated in papillary thyroid carcinoma tissues and cells. Through in vitro and in vivo experiments, knockdown of OTUB1 suppressed PTC cells growth whereas OTUB1 overexpression enhanced the proliferation ability of PTC cells. Moreover, the eyes absent homologue 1 (EYA1) was recognized as a potential target of OTUB1 through mass spectrometry analysis, and we further verified that EYA1 protein level was positively correlated with OTUB1 expression in PTC cells and clinical samples. Mechanistically, OTUB1 could interact with EYA1 directly and deubiquitinate EYA1 to stabilize it. At last, EYA1 was found to play an essential role in OTUB1-derived PTC cells growth. Overall, our investigation reveals that OTUB1 is a previously unrecognized oncogenic factor in PTC cells proliferation and suggests that OTUB1 might be a novel therapeutic target in PTC.


Subject(s)
Cell Proliferation/genetics , Deubiquitinating Enzymes/genetics , Intracellular Signaling Peptides and Proteins/genetics , Nuclear Proteins/genetics , Protein Tyrosine Phosphatases/genetics , Thyroid Neoplasms/genetics , Cell Cycle/genetics , Cell Line, Tumor , Cell Movement/genetics , Gene Expression Regulation, Neoplastic/genetics , Humans , Oncogenes/genetics , Signal Transduction/genetics , Thyroid Cancer, Papillary/genetics , Thyroid Cancer, Papillary/pathology , Thyroid Neoplasms/pathology , Up-Regulation/genetics
9.
Am J Cancer Res ; 11(10): 4807-4825, 2021.
Article in English | MEDLINE | ID: mdl-34765294

ABSTRACT

Deubiquitinase (DUB) zinc finger RANBP2-type containing 1 (ZRANB1) has been reported to have a close relationship with cancers. However, its underlying role and molecular mechanisms in hepatocellular carcinoma (HCC) remain elusive. In this study, we demonstrated that ZRANB1 was highly expressed in HCC tissues. Additionally, ZRANB1 overexpression was correlated with poorer survival and ZRANB1 could be an independent predictor of poor prognosis for HCC patients. Through gain- and loss-of-function assays, we examined the oncogenic role of ZRANB1 in regulating HCC cell growth and metastasis in vitro and in vivo. To identify the downstream targets of ZRANB1 in regulating HCC tumorigenesis, we performed RNA-seq and demonstrated that Lysyl oxidase-like 2 (LOXL2) was the most significantly downregulated gene after ZRANB1 knockdown. Furthermore, the scatter plots indicated a significant positive correlation between ZRANB1 and LOXL2 expression in clinical HCC specimens. We also demonstrated that ZRANB1 knockdown downregulated the expression of LOXL2 and suppressed HCC growth and metastasis in vitro and in vivo. The effects of ZRANB1 knockdown were reversed by LOXL2 overexpression. More importantly, ZRANB1 regulated LOXL2 through specificity protein 1 (SP1) and SP1 overexpression rescued the suppression of HCC growth and metastasis induced by ZRANB1 knockdown. Mechanistically, ZRANB1 bound with SP1 directly and stabilized the SP1 protein by deubiquitinating it. The expression patterns of ZRANB1, SP1 and LOXL2 were evaluated in HCC patients. In summary, our research highlights a novel role of ZRANB1 in the tumorigenesis of HCC and suggests a new candidate prognostic biomarker for HCC treatment.

10.
Endocrinology ; 162(3)2021 03 01.
Article in English | MEDLINE | ID: mdl-33508120

ABSTRACT

COP9 signalosome subunit 5 (CSN5) plays a key role in carcinogenesis of multiple cancers and contributes to the stabilization of target proteins through deubiquitylation. However, the underlying role of CSN5 in thyroid carcinoma has not been reported. In this research, our data showed that CSN5 was overexpressed in thyroid carcinoma tissues compared with paracancerous tissues. Furthermore, a series of gain/loss functional assays were performed to demonstrate the role of CSN5 in facilitating thyroid carcinoma cell proliferation and metastasis. Additionally, we found there was a positive correlation between CSN5 and angiopoietin-like protein 2 (ANGPTL2) protein levels in thyroid carcinoma tissues and that CSN5 promoted thyroid carcinoma cell proliferation and metastasis through ANGPTL2. We also identified the underlying mechanism that CSN5 elevated ANGPTL2 protein level by directly binding it, decreasing its ubiquitination and degradation. Overall, our results highlight the significance of CSN5 in promoting thyroid carcinoma carcinogenesis and implicate CSN5 as a promising candidate for thyroid carcinoma treatment.


Subject(s)
Angiopoietin-like Proteins/physiology , COP9 Signalosome Complex/physiology , Carcinogenesis/genetics , Intracellular Signaling Peptides and Proteins/physiology , Peptide Hydrolases/physiology , Thyroid Neoplasms/genetics , Angiopoietin-Like Protein 2 , Angiopoietin-like Proteins/metabolism , Animals , Cells, Cultured , Female , Gene Expression Regulation, Neoplastic , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Protein Processing, Post-Translational/genetics , Proteolysis , Signal Transduction/genetics , Thyroid Neoplasms/metabolism , Thyroid Neoplasms/pathology , Ubiquitination/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...