Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 103
Filter
Add more filters










Publication year range
1.
Physiol Plant ; 176(3): e14364, 2024.
Article in English | MEDLINE | ID: mdl-38837226

ABSTRACT

Phytoremediation is a promising technology for removing the high-toxic explosive 2,4,6-trinitrotoluene (TNT) pollutant from the environment. Mining dominant genes is the key research direction of this technology. Most previous studies have focused on the detoxification of TNT rather than plants' TNT tolerance. Here, we conducted a transcriptomic analysis of wild type Arabidopsis plants under TNT stress and found that the Arabidopsis cytochrome P450 gene CYP81D11 was significantly induced in TNT-treated plants. Under TNT stress, the root length was approximately 1.4 times longer in CYP81D11-overexpressing transgenic plants than in wild type plants. The half-removal time for TNT was much shorter in CYP81D11-overexpressing transgenic plants (1.1 days) than in wild type plants (t1/2 = 2.2 day). In addition, metabolic analysis showed no difference in metabolites in transgenic plants compared to wild type plants. These results suggest that the high TNT uptake rates of CYP81D11-overexpressing transgenic plants were most likely due to increased tolerance and biomass rather than TNT degradation. However, CYP81D11-overexpressing plants were not more tolerant to osmotic stresses, such as salt or drought. Taken together, our results indicate that CYP81D11 is a promising target for producing bioengineered plants with high TNT removing capability.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Biodegradation, Environmental , Cytochrome P-450 Enzyme System , Gene Expression Regulation, Plant , Plants, Genetically Modified , Trinitrotoluene , Arabidopsis/genetics , Arabidopsis/metabolism , Trinitrotoluene/metabolism , Cytochrome P-450 Enzyme System/metabolism , Cytochrome P-450 Enzyme System/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Plant Roots/genetics , Plant Roots/metabolism , Stress, Physiological/genetics
2.
Plant Biotechnol J ; 2024 May 01.
Article in English | MEDLINE | ID: mdl-38690830

ABSTRACT

Dinitrotoluene sulfonates (DNTSes) are highly toxic hazards regulated by the Resource Conservation and Recovery Act (RCRA) in the United States. The trinitrotoluene (TNT) red water formed during the TNT purification process consists mainly of DNTSes. Certain plants, including switchgrass, reed and alfalfa, can detoxify low concentrations of DNTS in TNT red water-contaminated soils. However, the precise mechanism by which these plants detoxify DNTS remains unknown. In order to aid in the development of phytoremediation resources with high DNTS removal rates, we identified and characterized 1-hydroxymethyl-2,4-dinitrobenzene sulfonic acid (HMDNBS) and its glycosylated product HMDNBS O-glucoside as the degradation products of 2,4-DNT-3-SO3Na, the major isoform of DNTS in TNT red water-contaminated soils, in switchgrass via LC-MS/MS- and NMR-based metabolite analyses. Transcriptomic analysis revealed that 15 UDP-glycosyltransferase genes were dramatically upregulated in switchgrass plants following 2,4-DNT-3-SO3Na treatment. We expressed, purified and assayed the activity of recombinant UGT proteins in vitro and identified PvUGT96C10 as the enzyme responsible for the glycosylation of HMDNBS in switchgrass. Overexpression of PvUGT96C10 in switchgrass significantly alleviated 2,4-DNT-3-SO3Na-induced plant growth inhibition. Notably, PvUGT96C10-overexpressing transgenic switchgrass plants removed 83.1% of 2,4-DNT-3-SO3Na in liquid medium after 28 days, representing a 3.2-fold higher removal rate than that of control plants. This work clarifies the DNTS detoxification mechanism in plants for the first time, suggesting that PvUGT96C10 is crucial for DNTS degradation. Our results indicate that PvUGT96C10-overexpressing plants may hold great potential for the phytoremediation of TNT red water-contaminated soils.

3.
Plant J ; 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38507513

ABSTRACT

Culm development in grasses can be controlled by both miR156 and cytokinin. However, the crosstalk between the miR156-SPL module and the cytokinin metabolic pathway remains largely unknown. Here, we found CYTOKININ OXIDASE/DEHYDROGENASE4 (PvCKX4) plays a negative regulatory role in culm development of the bioenergy grass Panicum virgatum (switchgrass). Overexpression of PvCKX4 in switchgrass reduced the internode diameter and length without affecting tiller number. Interestingly, we also found that PvCKX4 was always upregulated in miR156 overexpressing (miR156OE) transgenic switchgrass lines. Additionally, upregulation of either miR156 or PvCKX4 in switchgrass reduced the content of isopentenyl adenine (iP) without affecting trans-zeatin (tZ) accumulation. It is consistent with the evidence that the recombinant PvCKX4 protein exhibited much higher catalytic activity against iP than tZ in vitro. Furthermore, our results showed that miR156-targeted SPL2 bound directly to the promoter of PvCKX4 to repress its expression. Thus, alleviating the SPL2-mediated transcriptional repression of PvCKX4 through miR156 overexpression resulted in a significant increase in cytokinin degradation and impaired culm development in switchgrass. On the contrary, suppressing PvCKX4 in miR156OE transgenic plants restored iP content, internode diameter, and length to wild-type levels. Most strikingly, the double transgenic lines retained the same increased tiller numbers as the miR156OE transgenic line, which yielded more biomass than the wild type. These findings indicate that the miR156-SPL module can control culm development through transcriptional repression of PvCKX4 in switchgrass, which provides a promising target for precise design of shoot architecture to yield more biomass from grasses.

4.
Plant Biotechnol J ; 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38492213

ABSTRACT

Wood formation, which occurs mainly through secondary xylem development, is important not only for supplying raw material for the 'ligno-chemical' industry but also for driving the storage of carbon. However, the complex mechanisms underlying the promotion of xylem formation remain to be elucidated. Here, we found that overexpression of Auxin-Regulated Gene involved in Organ Size (ARGOS) in hybrid poplar 84 K (Populus alba × Populus tremula var. glandulosa) enlarged organ size. In particular, PagARGOS promoted secondary growth of stems with increased xylem formation. To gain further insight into how PagARGOS regulates xylem development, we further carried out yeast two-hybrid screening and identified that the auxin transporter WALLS ARE THIN1 (WAT1) interacts with PagARGOS. Overexpression of PagARGOS up-regulated WAT1, activating a downstream auxin response promoting cambial cell division and xylem differentiation for wood formation. Moreover, overexpressing PagARGOS caused not only higher wood yield but also lower lignin content compared with wild-type controls. PagARGOS is therefore a potential candidate gene for engineering fast-growing and low-lignin trees with improved biomass production.

5.
Plant Biotechnol J ; 22(3): 712-721, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37929781

ABSTRACT

MiRNAs have been reported to be the key regulators involving a wide range of biological processes in diverse plant species, but their functions in switchgrass, an important biofuel and forage crop, are largely unknown. Here, we reported the novel function of miR528, which has expanded to four copies in switchgrass, in controlling biomass trait of tillering number and regrowth rate after mowing. Blocking miR528 activity by expressing short tandem target mimic (STTM) increased tiller number and regrowth rate after mowing. The quadruple pvmir528 mutant lines derived from genome editing also showed such improved traits. Degradome and RNA-seq analysis, combined with in situ hybridization assay revealed that up-regulation of two miR528 targets coding for Cu/Zn-SOD enzymes, might be responsible for the improved traits of tillering and regrowth in pvmir528 mutant. Additionally, natural variations in the miR528-SOD interaction exist in C3 and C4 monocot species, implying the distinct regulatory strength of the miR528-SOD module during monocot evolution. Overall, our data illuminated a novel role of miR528 in controlling biomass traits and provided a new target for genetic manipulation-mediated crop improvement.


Subject(s)
Panicum , Panicum/genetics , Up-Regulation , Superoxide Dismutase/genetics , Gene Expression Regulation, Plant/genetics
6.
J Integr Plant Biol ; 65(10): 2279-2291, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37526388

ABSTRACT

Compound leaf development requires the coordination of genetic factors, hormones, and other signals. In this study, we explored the functions of Class Ⅱ KNOTTED-like homeobox (KNOXII) genes in the model leguminous plant Medicago truncatula. Phenotypic and genetic analyses suggest that MtKNOX4, 5 are able to repress leaflet formation, while MtKNOX3, 9, 10 are not involved in this developmental process. Further investigations have shown that MtKNOX4 represses the CK signal transduction, which is downstream of MtKNOXⅠ-mediated CK biosynthesis. Additionally, two boundary genes, FUSED COMPOUND LEAF1 (orthologue of Arabidopsis Class M KNOX) and NO APICAL MERISTEM (orthologue of Arabidopsis CUP-SHAPED COTYLEDON), are necessary for MtKNOX4-mediated compound leaf formation. These findings suggest, that among the members of MtKNOXⅡ, MtKNOX4 plays a crucial role in integrating the CK pathway and boundary regulators, providing new insights into the roles of MtKNOXⅡ in regulating the elaboration of compound leaves in M. truncatula.


Subject(s)
Arabidopsis , Medicago truncatula , Arabidopsis/genetics , Arabidopsis/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Leaves/metabolism , Meristem/metabolism , Gene Expression Regulation, Plant , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism
7.
Nat Commun ; 14(1): 4285, 2023 07 18.
Article in English | MEDLINE | ID: mdl-37463897

ABSTRACT

The conversion of lignocellulosic feedstocks to fermentable sugar for biofuel production is inefficient, and most strategies to enhance efficiency directly target lignin biosynthesis, with associated negative growth impacts. Here we demonstrate, for both laboratory- and field-grown plants, that expression of Pag-miR408 in poplar (Populus alba × P. glandulosa) significantly enhances saccharification, with no requirement for acid-pretreatment, while promoting plant growth. The overexpression plants show increased accessibility of cell walls to cellulase and scaffoldin cellulose-binding modules. Conversely, Pag-miR408 loss-of-function poplar shows decreased cell wall accessibility. Overexpression of Pag-miR408 targets three Pag-LACCASES, delays lignification, and modestly reduces lignin content, S/G ratio and degree of lignin polymerization. Meanwhile, the LACCASE loss of function mutants exhibit significantly increased growth and cell wall accessibility in xylem. Our study shows how Pag-miR408 regulates lignification and secondary growth, and suggest an effective approach towards enhancing biomass yield and saccharification efficiency in a major bioenergy crop.


Subject(s)
MicroRNAs , Populus , Lignin/metabolism , Plants, Genetically Modified/genetics , MicroRNAs/genetics , Biomass , Populus/metabolism
8.
Plant Physiol ; 192(4): 2902-2922, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37226859

ABSTRACT

Amur honeysuckle (Lonicera maackii) is a widely used medicinal plant of the Caprifoliaceae family that produces chlorogenic acid. Research on this plant mainly focuses on its ornamental value and medicinal compounds, but a reference genome sequence and molecular resources for accelerated breeding are currently lacking. Herein, nanopore sequencing and high-throughput chromosome conformation capture (Hi-C) allowed a chromosome-level genome assembly of L. maackii (2n = 18). A global view of the gene regulatory network involved in the biosynthesis of chlorogenic acid and the dynamics of fruit coloration in L. maackii was established through metabolite profiling and transcriptome analyses. Moreover, we identified the genes encoding hydroxycinnamoyl-CoA quinate transferase (LmHQT) and hydroxycinnamoyl-CoA shikimic/quinate transferase (LmHCT), which localized to the cytosol and nucleus. Heterologous overexpression of these genes in Nicotiana benthamiana leaves resulted in elevated chlorogenic acid contents. Importantly, HPLC analyses revealed that LmHCT and LmHQTs recombinant proteins modulate the accumulation of chlorogenic acid (CGA) using quinic acid and caffeoyl CoA as substrates, highlighting the importance of LmHQT and LmHCT in CGA biosynthesis. These results confirmed that LmHQTs and LmHCT catalyze the biosynthesis of CGA in vitro. The genomic data presented in this study will offer a valuable resource for the elucidation of CGA biosynthesis and facilitating selective molecular breeding.


Subject(s)
Chlorogenic Acid , Lonicera , Chlorogenic Acid/metabolism , Lonicera/genetics , Lonicera/metabolism , Quinic Acid/metabolism , Plant Breeding , Chromosome Mapping
9.
Biotechnol Biofuels Bioprod ; 16(1): 9, 2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36650607

ABSTRACT

BACKGROUND: Lignocellulose is a valuable carbon source for the production of biofuels and biochemicals, thus having the potential to substitute fossil resources. Consolidated bio-saccharification (CBS) is a whole-cell-based catalytic technology previously developed to produce fermentable sugars from lignocellulosic agricultural wastes. The deep-sea yeast strain Rhodotorula paludigena P4R5 can produce extracellular polyol esters of fatty acids (PEFA) and intracellular single-cell oils (SCO) simultaneously. Therefore, the integration of CBS and P4R5 fermentation processes would achieve high-value-added conversion of lignocellulosic biomass. RESULTS: The strain P4R5 could co-utilize glucose and xylose, the main monosaccharides from lignocellulose, and also use fructose and arabinose for PEFA and SCO production at high levels. By regulating the sugar metabolism pathways for different monosaccharides, the strain could produce PEFA with a single type of polyol head. The potential use of PEFA as functional micelles was also determined. Most importantly, when sugar-rich CBS hydrolysates derived from corn stover or corncob residues were used to replace grain-derived pure sugars for P4R5 fermentation, similar PEFA and SCO productions were obtained, indicating the robust conversion of non-food corn plant wastes to high-value-added glycolipids and lipids. Since the produced PEFA could be easily collected from the culture via short-time standing, we further developed a semi-continuous process for PEFA production from corncob residue-derived CBS hydrolysate, and the PEFA titer and productivity were enhanced up to 41.1 g/L and 8.22 g/L/day, respectively. CONCLUSIONS: Here, we integrated the CBS process and the P4R5 fermentation for the robust production of high-value-added PEFA and SCO from non-food corn plant wastes. Therefore, this study suggests a feasible way for lignocellulosic agro-waste utilization and the potential application of P4R5 in industrial PEFA production.

10.
Angew Chem Int Ed Engl ; 62(12): e202215529, 2023 03 13.
Article in English | MEDLINE | ID: mdl-36704842

ABSTRACT

Flavonoids are important plant natural products with variable structures and bioactivities. All known plant flavonoids are generated under the catalysis of a type III polyketide synthase (PKS) followed by a chalcone isomerase (CHI) and a flavone synthase (FNS). In this study, the biosynthetic gene cluster of chlorflavonin, a fungal flavonoid with acetolactate synthase inhibitory activity, was discovered using a self-resistance-gene-directed strategy. A novel flavonoid biosynthetic pathway in fungi was revealed. A core nonribosomal peptide synthetase-polyketide synthase (NRPS-PKS) is responsible for the generation of the key precursor chalcone. Then, a new type of CHI catalyzes the conversion of a chalcone into a flavanone by a histidine-mediated oxa-Michael addition mechanism. Finally, the desaturation of flavanone to flavone is catalyzed by a new type of FNS, a flavin mononucleotide (FMN)-dependent oxidoreductase.


Subject(s)
Chalcones , Flavanones , Flavones , Polyketide Synthases/metabolism , Fungi/metabolism , Peptide Synthases/metabolism
11.
Int J Mol Sci ; 23(12)2022 Jun 10.
Article in English | MEDLINE | ID: mdl-35742972

ABSTRACT

Plant laccase genes belong to a multigene family, play key roles in lignin polymerization, and participate in the resistance of plants to biotic and abiotic stresses. Switchgrass is an important resource for forage and bioenergy production, yet information about the switchgrass laccase gene family is scarce. Using bioinformatic approaches, a genome-wide analysis of the laccase multigene family in switchgrass was carried out in this study. In total, 49 laccase genes (PvLac1 to PvLac49) were identified; these can be divided into five subclades, and 20 of them were identified as targets of miR397. The tandem and segmental duplication of laccase genes on Chr05 and Chr08 contributed to the expansion of the laccase family. The laccase proteins shared conserved signature sequences but displayed relatively low sequence similarity, indicating the potential functional diversity of switchgrass laccases. Switchgrass laccases exhibited distinct tissue/organ expression patterns, revealing that some laccases might be involved in the lignification process during stem development. All five of the laccase isoforms selected from different subclades responded to heavy metal. The immediate response of lignin-related laccases, as well as the delayed response of low-abundance laccases, to heavy-metal treatment shed light on the multiple roles of laccase isoforms in response to heavy-metal stress.


Subject(s)
Metals, Heavy , Panicum , Laccase/genetics , Laccase/metabolism , Lignin/metabolism , Panicum/genetics , Panicum/metabolism , Phylogeny , Protein Isoforms/genetics
12.
Food Chem ; 390: 133155, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-35576806

ABSTRACT

The phenylpropane pathway (PPP) is one of the most extensively investigated metabolic routes. This pathway biosynthesizes many important active ingredients such as phenylpropanoids and flavonoids that affect the flavor, taste and nutrients of food. How to elucidate the metabolic phenotype of PPP is fundamental in food research and development. In this study, we designed a structural periodical table filled with 103 metabolites produced from PPP. All of them especially the 62 structural isomers were qualified and quantified with high resolution and sensitivity via multiple reaction mode in liquid chromatography tandem triple quadrupole mass spectrometry. Ginkgo biloba and soybean were used as samples for the practical application of this method: The delicate spatial-temporal metabolic balance of PPP from ginkgo biloba has been first elucidated; It is first confirmed that the salt and draught stresses could redirect the biosynthesis trend of PPP to produce more isoflavones in soybean leaves.


Subject(s)
Fabaceae , Ginkgo biloba , Chromatography, High Pressure Liquid/methods , Chromatography, Liquid , Flavonoids/analysis , Ginkgo biloba/chemistry , Phenotype , Plant Extracts/chemistry , Plant Leaves/chemistry , Glycine max , Tandem Mass Spectrometry/methods
13.
Physiol Plant ; 174(3): e13710, 2022 May.
Article in English | MEDLINE | ID: mdl-35567521

ABSTRACT

Bermudagrass is one of the most extensively used warm-season grasses. It is widely used in landscaping, stadium construction and soil remediation due to its excellent regeneration, trampling and stress tolerances. However, studies on its regulatory mechanism and variety improvement by genetic engineering are still at a standstill, owing to its genetic variability and intrinsic limits linked with some resistance to Agrobacterium infection. In this study, we established a higher efficient Agrobacterium-mediated transformation via screening for vital embryogenic callus and improving infection efficiency. The superior callus was light yellow, hard granular and compact, determined with a differentiation rate of more than 95%. The optimized infestation courses by gentle shaking, vacuuming and sonicating were used. The infested calluses were co-cultured for 3 days, followed by desiccation treatments for 1 day to get higher infection efficiency. Then the CdHEMA1 gene, essential for chlorophyll biosynthesis, was cloned and transferred into bermudagrass to validate the aforementioned optimization procedures integrally. Molecular-level analyses indicated that the CdHEMA1 gene had successfully integrated and was greatly increased in transgenic seedlings. Results of the photosynthetic capacity assessment showed that CdHEMA1 overexpression may considerably enhance the contents of photosynthetic pigments, OJIP curve and reaction center density (RC/CSo) to absorb (ABS/CSo, ABS/CSM) and capture (TRo/CSo) more light energy, hence improve the performance indices PIABS and PICS compared to the wild type. The successful completion of this project would provide a solid platform for further gene function study and molecular breeding of bermudagrass.


Subject(s)
Agrobacterium , Cynodon , Agrobacterium/genetics , Cynodon/genetics , Photosynthesis/genetics , Plants, Genetically Modified/genetics , Poaceae/genetics , Seedlings/genetics , Transformation, Genetic
14.
J Exp Bot ; 73(12): 4157-4169, 2022 06 24.
Article in English | MEDLINE | ID: mdl-35383829

ABSTRACT

S-adenosyl- l-methionine (SAM) is the methyl donor involved in the biosynthesis of guaiacyl (G) and syringyl (S) lignins in vascular plants. SAM is synthesized from methionine through the catalysis of the enzyme S-adenosylmethionine synthase (SAMS). However, the detailed function of SAMS in lignin biosynthesis has not been widely investigated in plants, particularly in monocot species. In this study, we identified PvSAMS genes from switchgrass (Panicum virgatum L.), an important dual-purpose fodder and biofuel crop, and generated numerous transgenic switchgrass lines through PvSAMS RNA interference technology. Down-regulation of PvSAMS reduced the contents of SAM, G-lignins, and S-lignins in the transgenic switchgrass. The methionine and glucoside derivatives of caffeoyl alcohol were found to accumulate in the transgenic plants. Moreover, down-regulation of PvSAMS in switchgrass resulted in brownish stems associated with reduced lignin content and improved cell wall digestibility. Furthermore, transcriptomic analysis revealed that most sulfur deficiency-responsive genes were differentially expressed in the transgenic switchgrass, leading to a significant increase in total sulfur content; thus implying an important role of SAMS in the methionine cycle, lignin biosynthesis, and sulfur assimilation. Taken together, our results suggest that SAMS is a valuable target in lignin manipulation, and that manipulation of PvSAMS can simultaneously regulate the biosynthesis of SAM and methylated monolignols in switchgrass.


Subject(s)
Panicum , Cell Wall/metabolism , Down-Regulation , Gene Expression Regulation, Plant , Lignin/metabolism , Methionine/metabolism , Panicum/genetics , Panicum/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , S-Adenosylmethionine/metabolism , Sulfur/metabolism
15.
New Phytol ; 235(2): 563-575, 2022 07.
Article in English | MEDLINE | ID: mdl-35383390

ABSTRACT

Strigolactones (SLs) play a critical role in regulating plant tiller number. LATERAL BRANCHING OXIDOREDUCTASE (LBO) encodes an important late-acting enzyme for SL biosynthesis and regulates shoot branching in Arabidopsis. However, little is known about the function of LBO in monocots including switchgrass (Panicum virgatum L.), a dual-purpose fodder and biofuel crop. We studied the function of PvLBO via the genetic manipulation of its expression levels in both the wild-type and miR156 overexpressing (miR156OE ) switchgrass. Co-expression analysis, quantitative real-time polymerase chain reaction (qRT-PCR), transient dual luciferase assay, and chromatin immunoprecipitation-qPCR were all used to determine the activation of PvLBO by miR156-targeted Squamosa Promoter Binding Protein-like 2 (PvSPL2) in regulating tillering of switchgrass. PvLBOtranscripts dramatically declined in miR156OE transgenic switchgrass, and the overexpression of PvLBO in the miR156OE transgenic line produce fewer tillers than the control. Furthermore, we found that PvSPL2 can directly bind to the promoter of PvLBO and activate its transcription, suggesting that PvLBO is a novel downstream gene of PvSPL2. We propose that PvLBO functions as an SL biosynthetic gene to mediate tillering and acts as an important downstream factor in the crosstalk between the SL biosynthetic pathway and the miR156-SPL module in switchgrass.


Subject(s)
Arabidopsis , MicroRNAs , Panicum , Arabidopsis/genetics , Carrier Proteins/metabolism , Gene Expression Regulation, Plant , MicroRNAs/genetics , MicroRNAs/metabolism , Oxidoreductases/metabolism , Panicum/metabolism , Plants, Genetically Modified/metabolism
16.
Front Plant Sci ; 13: 834431, 2022.
Article in English | MEDLINE | ID: mdl-35251105

ABSTRACT

MiR156/SQUAMOSA PROMOTER BINDING-LIKEs (SPLs) module is the key regulatory hub of juvenile-to-adult phase transition as a critical flowering regulator. In this study, a miR156-targeted PvSPL6 was identified and characterized in switchgrass (Panicum virgatum L.), a dual-purpose fodder and biofuel crop. Overexpression of PvSPL6 in switchgrass promoted flowering and reduced internode length, internode number, and plant height, whereas downregulation of PvSPL6 delayed flowering and increased internode length, internode number, and plant height. Protein subcellular localization analysis revealed that PvSPL6 localizes to both the plasma membrane and nucleus. We produced transgenic switchgrass plants that overexpressed a PvSPL6-GFP fusion gene, and callus were induced from inflorescences of selected PvSPL6-GFPOE transgenic lines. We found that the PvSPL6-GFP fusion protein accumulated mainly in the nucleus in callus and was present in both the plasma membrane and nucleus in regenerating callus. However, during subsequent development, the signal of the PvSPL6-GFP fusion protein was detected only in the nucleus in the roots and leaves of plantlets. In addition, PvSPL6 protein was rapidly transported from the nucleus to the plasma membrane after exogenous GA3 application, and returned from the plasma membrane to nucleus after treated with the GA3 inhibitor (paclobutrazol). Taken together, our results demonstrate that PvSPL6 is not only an important target that can be used to develop improved cultivars of forage and biofuel crops that show delayed flowering and high biomass yields, but also has the potential to regulate plant regeneration in response to GA3.

17.
Plant Cell ; 34(2): 927-944, 2022 02 03.
Article in English | MEDLINE | ID: mdl-34865139

ABSTRACT

High soil salinity negatively affects plant growth and development, leading to a severe decrease in crop production worldwide. Here, we report that a secreted peptide, PAMP-INDUCED SECRETED PEPTIDE 3 (PIP3), plays an essential role in plant salt tolerance through RECEPTOR-LIKE KINASE 7 (RLK7) in Arabidopsis (Arabidopsis thaliana). The gene encoding the PIP3 precursor, prePIP3, was significantly induced by salt stress. Plants overexpressing prePIP3 exhibited enhanced salt tolerance, whereas a prePIP3 knockout mutant had a salt-sensitive phenotype. PIP3 physically interacted with RLK7, a leucine-rich repeat RLK, and salt stress enhanced PIP3-RLK7 complex formation. Functional analyses revealed that PIP3-mediated salt tolerance is dependent on RLK7. Exogenous application of synthetic PIP3 peptide activated RLK7, and salt treatment significantly induced RLK7 phosphorylation in a PIP3-dependent manner. Notably, MITOGEN-ACTIVATED PROTEIN KINASE3 (MPK3) and MPK6 were downstream of the PIP3-RLK7 module in salt response signaling. Activation of MPK3/6 was attenuated in pip3 or rlk7 mutants under saline conditions. Therefore, MPK3/6 might amplify salt stress response signaling in plants for salt tolerance. Collectively, our work characterized a novel ligand-receptor signaling cascade that modulates plant salt tolerance in Arabidopsis. This study contributes to our understanding of how plants respond to salt stress.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Salt Tolerance , Arabidopsis/physiology , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Mitogen-Activated Protein Kinase Kinases/metabolism , Mitogen-Activated Protein Kinases/metabolism , Phosphorylation , Plants, Genetically Modified , Salt Stress/physiology , Salt Tolerance/physiology
18.
Genomics Proteomics Bioinformatics ; 20(4): 747-764, 2022 Aug.
Article in English | MEDLINE | ID: mdl-33662619

ABSTRACT

MicroRNAs (miRNAs) are trans-acting small regulatory RNAs that work coordinately with transcription factors (TFs) to shape the repertoire of cellular mRNAs available for translation. Despite our growing knowledge of individual plant miRNAs, their global roles in gene regulatory networks remain mostly unassessed. Based on interactions obtained from public databases and curated from the literature, we reconstructed an integrated miRNA network in Arabidopsis that includes 66 core TFs, 318 miRNAs, and 1712 downstream genes. We found that miRNAs occupy distinct niches and enrich miRNA-containing feed-forward loops (FFLs), particularly those with miRNAs as intermediate nodes. Further analyses revealed that miRNA-containing FFLs coordinate TFs located in different hierarchical layers and that intertwined miRNA-containing FFLs are associated with party and date miRNA hubs. Using the date hub MIR858A as an example, we performed detailed molecular and genetic analyses of three interconnected miRNA-containing FFLs. These analyses revealed individual functions of the selected miRNA-containing FFLs and elucidated how the date hub miRNA fulfills multiple regulatory roles. Collectively, our findings highlight the prevalence and importance of miRNA-containing FFLs, and provide new insights into the design principles and control logics of miRNA regulatory networks governing gene expression programs in plants.


Subject(s)
Arabidopsis , MicroRNAs , MicroRNAs/genetics , MicroRNAs/metabolism , Gene Regulatory Networks , Arabidopsis/genetics , Arabidopsis/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Databases, Factual
19.
Front Bioeng Biotechnol ; 9: 772397, 2021.
Article in English | MEDLINE | ID: mdl-34900963

ABSTRACT

Motility is finely regulated and is crucial to bacterial processes including colonization and biofilm formation. There is a trade-off between motility and growth in bacteria with molecular mechanisms not fully understood. Hypermotile Escherichia coli could be isolated by evolving non-motile cells on soft agar plates. Most of the isolates carried mutations located upstream of the flhDC promoter region, which upregulate the transcriptional expression of the master regulator of the flagellum biosynthesis, FlhDC. Here, we identified that spontaneous mutations in clpX boosted the motility of E. coli largely, inducing several folds of changes in swimming speed. Among the mutations identified, we further elucidated the molecular mechanism underlying the ClpXV78F mutation on the regulation of E. coli motility. We found that the V78F mutation affected ATP binding to ClpX, resulting in the inability of the mutated ClpXP protease to degrade FlhD as indicated by both structure modeling and in vitro protein degradation assays. Moreover, our proteomic data indicated that the ClpXV78F mutation elevated the stability of known ClpXP targets to various degrees with FlhD as one of the most affected. In addition, the specific tag at the C-terminus of FlhD being recognized for ClpXP degradation was identified. Finally, our transcriptome data characterized that the enhanced expression of the motility genes in the ClpXV78F mutations was intrinsically accompanied by the reduced expression of stress resistance genes relating to the reduced fitness of the hypermotile strains. A similar pattern was observed for previously isolated hypermotile E. coli strains showing high expression of flhDC at the transcriptional level. Hence, clpX appears to be a hot locus comparable to the upstream of the flhDC promoter region evolved to boost bacterial motility, and our finding provides insight into the reduced fitness of the hypermotile bacteria.

20.
Hortic Res ; 8(1): 252, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34848686

ABSTRACT

Switchgrass (Panicum virgatum L.) is an important perennial, noninvasive, tall ornamental grass that adds color and texture to gardens and landscapes. Moreover, switchgrass has been considered a forage and bioenergy crop because of its vigorous growth, low-input requirements, and broad geography. Here, we identified PvWOX3a from switchgrass, which encodes a WUSCHEL-related homeobox transcription factor. Transgenic overexpression of PvWOX3a in switchgrass increased stem length, internode diameter, and leaf blade length and width, all of which contributed to a 95% average increase in dry weight biomass compared with control plants. Yeast one-hybrid and transient dual-luciferase assays showed that PvWOX3a can repress the expression of gibberellin 2-oxidase and cytokinin oxidase/dehydrogenase through apparently direct interaction with their promoter sequences. These results suggested that overexpression of PvWOX3a could increase gibberellin and cytokinin levels in transgenic switchgrass plants, which promotes cell division, elongation, and vascular bundle development. We also overexpressed PvWOX3a in a transgenic miR156-overexpressing switchgrass line that characteristically exhibited more tillers, thinner internodes, and narrower leaf blades. Double transgenic switchgrass plants displayed significant increases in internode length and diameter, leaf blade width, and plant height but retained a tiller number comparable to that of plants expressing miR156 alone. Ultimately, the double transgenic switchgrass plants produced 174% more dry-weight biomass and 162% more solubilized sugars on average than control plants. These findings indicated that PvWOX3a is a viable potential genetic target for engineering improved shoot architecture and biomass yield of horticulture, fodder, and biofuel crops.

SELECTION OF CITATIONS
SEARCH DETAIL
...