Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 158: 244-250, 2020 Apr 30.
Article in English | MEDLINE | ID: mdl-32360465

ABSTRACT

Skin care biomaterials from natural compounds are increasingly needed in recent. We demonstrate a simple strategy to fabricate the dialdehyde xylan (DAX) crosslinked hydrogel with skin care potential. The hydrogel mainly consists of dialdehyde xylan, which is used as crosslinker for gelatin (G). Glycerol (Gly) and nicotinamide (NCA) are introduced here for improving the texture, antibacterial property as well as skin care functionality. The in vitro release results demonstrate that NCA can be released smoothly from the xylan-based gel, whereby the xylan-based fabricated gel can be utilized as an ideal matrix gel in skin care with loading and release function. The antibacterial ability is in the following order: Yeast > Bacillus subtilis > Staphylococcus aureus. The cytocompatibility experiments confirm the excellent viability of the gel. These merits demonstrate the fabricated hydrogel as a potential material in skin care.

2.
J Agric Food Chem ; 66(35): 9199-9208, 2018 Sep 05.
Article in English | MEDLINE | ID: mdl-30102859

ABSTRACT

To study the differences in chemical composition analysis and spatial distribution of young Neosinocalamus affinis bamboo, we used the methods of standard of National Renewable Energy Laboratory and confocal Raman microscopy, respectively. It was found that the acid-soluble lignin and acid-insoluble lignin content showed an inverse relationship with the increasing bamboo age. Raman analysis revealed that Raman signal intensity of lignin in both the secondary cell wall and the compound middle lamella regions showed a similar increase trend with growth of bamboo. In addition, eight hemicellulosic fractions were obtained by successively treating holocellulose of the 2-, 4-, 8-, and 12-month-old Neosinocalamus affinis bamboo culms with DMSO and alkaline solution. The ratio of arabinose to xylose of hemicelluloses was increased with the growth of bamboo. FT-IR and NMR analyses revealed that DMSO-soluble hemicelluloses of young bamboo culms are mainly composed of highly substituted xylans and ß-d-glucans.


Subject(s)
Bambusa/chemistry , Plant Extracts/chemistry , Bambusa/growth & development , Cell Wall/chemistry , Lignin/chemistry , Lignin/isolation & purification , Magnetic Resonance Spectroscopy , Plant Extracts/isolation & purification , Plant Shoots/chemistry , Plant Shoots/growth & development , Polysaccharides/chemistry , Polysaccharides/isolation & purification , Spectroscopy, Fourier Transform Infrared
3.
Int J Mol Sci ; 19(1)2017 Dec 21.
Article in English | MEDLINE | ID: mdl-29267210

ABSTRACT

The lignin-carbohydrate complex (LCC) was isolated from milled wood lignin of 2- and 24-month-old crude bamboo (Neosinocalamus affinis) culms using acetic acid (AcOH) and then characterized. The results have shown that the LCC preparation from 2-month-old bamboo (L2) exhibited a slightly lower molecular weight than the LCC preparation from the 24-month-old bamboo (L24). Further studies using Fourier transform infrared spectroscopy (FT-IR) and heteronuclear single quantum coherence (2D-HSQC) NMR spectra analyses indicate that the LCC preparations included glucuronoarabinoxylan and G-S-H lignin-type with G>S>>H. The content of the S lignin units of LCC in the mature bamboo was always higher than in the young bamboo. Combined with sugar composition analysis, the contents of phenyl glycoside and ether linkages in the L24 preparation were higher than in the L2 preparation; however, there was a reverse relationship of ester LCC bonds in L2 and L24. Lignin-xylan was the main type of LCC linkage in bamboo LCCs. Lignin-lignin linkages in the LCC preparations included ß-ß, ß-5 and ß-1 carbon-to-carbon, as well as ß-O-4 ether linkages, but ß-1 linkages were not present in L2.


Subject(s)
Bambusa/chemistry , Carbohydrates/chemistry , Lignin/chemistry , Macromolecular Substances/chemistry , Wood/chemistry , Acetic Acid/chemistry , Carbohydrate Conformation , Molecular Structure , Molecular Weight , Xylans/chemistry
4.
Sci Rep ; 7: 41075, 2017 01 23.
Article in English | MEDLINE | ID: mdl-28112259

ABSTRACT

Biobased nanocomposite films for food packaging with high mechanical strength and good oxygen-barrier performance were developed using a hot-water wood extract (HWE). In this work, a facile approach to produce HWE/montmorillonite (MMT) based nanocomposite films with excellent physical properties is described. The focus of this study was to determine the effects of the MMT content on the structure and mechanical properties of nanocomposites and the effects of carboxymethyl cellulose (CMC) on the physical properties of the HWE-MMT films. The experimental results suggested that the intercalation of HWE and CMC in montmorillonite could produce compact, robust films with a nacre-like structure and multifunctional characteristics. This results of this study showed that the mechanical properties of the film designated FCMC0.05 (91.5 MPa) were dramatically enhanced because the proportion of HWE, MMT and CMC was 1:1.5:0.05. In addition, the optimized films exhibited an oxygen permeability below 2.0 cm3 µm/day·m2·kPa, as well as good thermal stability due to the small amount of CMC. These results provide a comprehensive understanding for further development of high-performance nanocomposites which are based on natural polymers (HWE) and assembled layered clays (MMT). These films offer great potential in the field of sustainable packaging.

5.
Sci Rep ; 6: 33603, 2016 09 16.
Article in English | MEDLINE | ID: mdl-27634095

ABSTRACT

Hemicelluloses are widely used to prepare gel materials because of their renewability, biodegradability, and biocompatibility. Here, molecular chain extension of hemicelluloses was obtained in a two-step process. Composite hydrogels were prepared via free radical graft copolymerization of crosslinked quaternized hemicelluloses (CQH) and acrylic acid (AA) in the presence of crosslinking agent N,N'-methylenebisacrylamide (MBA). This chain extension strategy significantly improved the mechanical performance of the resulting hydrogels. The crosslinking density, compression modulus, and swelling capacities of hydrogels were tuned by changing the AA/CQH and MBA/CQH contents. Moreover, the biocompatibility test suggests that the hemicelluloses-based hydrogels exhibited no toxicity to cells and allowed cell growth. Taken together, these properties demonstrated that the composite hydrogels have potential applications in the fields of water absorbents, cell culture, and other functional biomaterials.

SELECTION OF CITATIONS
SEARCH DETAIL
...