Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Biomed Pharmacother ; 177: 116973, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38908204

ABSTRACT

Hepatocyte transplantation is an effective treatment for end-stage liver disease. However, due to the limited supply of human hepatocytes, porcine hepatocytes have garnered attention as a potential alternative source. Nonetheless, traditional primary porcine hepatocytes exhibit certain limitations in function maintenance and in vitro proliferation. This study has discovered that by using histone deacetylase inhibitors (HDACi), primary porcine hepatocytes can be successfully reprogrammed into liver progenitor cells with high proliferative potential. This method enables porcine hepatocytes to proliferate over an extended period in vitro and exhibit increased susceptibility in lentivirus-mediated gene modification. These liver progenitor cells can readily differentiate into mature hepatocytes and, upon microencapsulation transplantation into mice with acute liver failure, significantly improve the survival rate. This research provides new possibilities for the application of porcine hepatocytes in the treatment of end-stage liver disease.

2.
Ann Med Surg (Lond) ; 86(5): 2507-2517, 2024 May.
Article in English | MEDLINE | ID: mdl-38694292

ABSTRACT

Background: Surgical excision is considered one of the most effective treatments for secondary osteosarcoma (SO). It remains unclear whether the survival of patients with secondary osteosarcoma (SO) could be associated with their surgical willingness. Materials and methods: The statistics of the patients diagnosed with SO between 1975 and 2008 were gathered from the surveillance epidemiology and end results (SEER) database. The patients were divided into three subgroups according to their surgical compliance. The authors used the multivariable Logistic regression analysis and cox regression method to reveal the influence of surgical compliance on prognosis and the risk factors of surgical compliance. Additionally, the authors formulated a nomogram model to predict the overall survival (OS) of patients. The concordance index (C-index) was used to evaluate the accuracy and practicability of the above prediction model. Results: Sixty-three (9.2%) of the 688 patients with SO who were recommended for surgical treatment refused to undergo surgery. Lower surgical compliance can be ascribed to an earlier time of diagnosis and refusal of chemotherapy. The lower overall survival (OS) {[hazard ratio (HR)] 1.733, [CI] 1.205-2.494, P value [P]=0.003} of not surgical compliant patients was verified by the multivariate cox regression method, compared with surgical compliant patients. In addition, the discernibility of the nomogram model was proven to be relatively high (C-index=0.748), by which we can calibrate 3-year- and 5-year OS prediction plots to obtain good concordance to the actual situation. Conclusions: Surgical compliance was proved to be an independent prognostic factor in the survival of patients with SO.

3.
Cancer Lett ; 584: 216664, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38253219

ABSTRACT

Colorectal cancer (CRC) from different regions exhibits different histological, genetic characteristics, and molecular subtypes, even in response to conventional chemotherapies and immunotherapies. To characterize the immune landscape in different regions of CRC and search for potential therapeutic targets, we analyzed 39,484 single-cell transcription data from 19 samples of CRC and paired normal tissues from four regions to identify the immune characteristics of CRC among anatomic locations, especially in B cells. We discovered that immune cell infiltration in tumors significantly varied among different regions of CRC. B cells from right- and left-sided CRC had different development trajectories, but both had extensive interactions with myeloid cells and T cells. Survival analysis suggested that CD20+ B cells correlated with good prognosis in CRC patients, especially on the right side. Furthermore, the depletion of CD20+ B cells demonstrated that anti-CD20 promoted tumor growth progression and reversed the tumor-killing activity of anti-PD-1 treatment in vivo and in vitro. Our results highlight the characterization of the immune landscape of CRC in different regions. CD20+ B-cell infiltration has been associated with CRC patient prognosis and may promote the tumor-killing role of PD-1 antibodies.


Subject(s)
Colorectal Neoplasms , Single-Cell Gene Expression Analysis , Humans , Antibodies , B-Lymphocytes , Immunotherapy , Colorectal Neoplasms/genetics , Prognosis , Tumor Microenvironment
4.
J Gene Med ; 26(1): e3630, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37985959

ABSTRACT

BACKGROUND: Cholangiocarcinoma (CCA) stands as an aggressive malignancy of the biliary tract. The interplay between the tumor and immune system plays a pivotal role in disease progression and treatment outcomes. Hence, the present study aimed to extensively explore the immunogenomic landscape of CCA, with the objective of unveiling unique molecular and immunological signatures that could guide personalized therapeutic approaches. METHODS: The study collected data from The Cancer Genome Atlas databases, performed gene set variation analysis for the chemokine ligand 5 (CCL5) high/low expression group, conducted principal component analysis, gene set enrichment analysis enrichment and mutation pattern analysis, generated a heatmap, and performed cox regression analysis. RESULTS: The two discrete subpopulations were found to exhibit contrasting mutational and immunogenomic characteristics, emphasizing the heterogeneity of CCA. These subsets also showed pronounced discrepancies in the infiltration of immune cells, indicating diverse interactions with the tumor immune microenvironment. Furthermore, the dissimilarities in mutational patterns were observed within the two CCA subgroups, with PBRM1 and BAP1 emerging as the most frequently mutated genes. In addition, a prognostic framework was formulated and validated utilizing the expression profiles of COX16 and RSAD2 genes, effectively segregating patients into high-risk and low-risk cohorts. Furthermore, the connections between immune-related parameters and these risk groups were identified, underscoring the potential significance of the immune microenvironment in patient prognosis. In vitro experiments have shown that COX16 promotes the proliferation and metastasis of CCA cells, whereas RSAD2 inhibits it. CONCLUSIONS: The present study provides an intricate depiction of the immunogenomic landscape of CCA based on CCL5 expression, thereby paving the way for novel immunotherapy strategies and prognostic assessment.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Humans , Prognosis , Ligands , Bile Duct Neoplasms/genetics , Bile Duct Neoplasms/therapy , Cholangiocarcinoma/genetics , Cholangiocarcinoma/therapy , Cholangiocarcinoma/pathology , Bile Ducts, Intrahepatic/pathology , Tumor Microenvironment/genetics , Chemokine CCL5/genetics
5.
Cell Biosci ; 13(1): 184, 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37784089

ABSTRACT

BACKGROUND: CD24+CK19+/CD24+SOX9+ resident liver cells are activated and expanded after chronic liver injury in a ductular reaction. However, the sources and functions of these cells in liver damage remain disputed. RESULTS: The current study combined genetic lineage tracing with in vitro small-molecule-based reprogramming to define liver progenitor cells (LPCs) derived from hepatic parenchymal and non-parenchymal tissues. tdTom+ hepatocytes were isolated from ROSA26tdTomato mice following AAV8-Tbg-Cre-mediated recombination, EpCAM+ biliary epithelial cells (BECs) from wild-type intrahepatic bile ducts and ALB/GFP-EpCAM- cells were isolated from AlbCreERT/R26GFP mice. A cocktail of small molecules was used to convert the isolated cells into LPCs. These in vitro cultured LPCs with CD24 and SOX9 expression regained the ability to proliferate. Transcriptional profiling showed that the in-vitro cultured LPCs derived from the resident LPCs in non-parenchymal tissues expressed Lipocalin-2 (Lcn2) at high levels. Accordingly, endogenous Cd24a+Lcn2+ LPCs were identified by integration of sc-RNA-sequencing and pathological datasets of liver dysfunction which indicates that LPCs produced by ductular reactions might also originate from the resident LPCs. Transplantation of in-vitro cultured Cd24a+Lcn2+ LPCs into CCl4-induced fibrotic livers exacerbated liver damage and dysfunction, possibly due to LCN2-dependent macrophage inflammatory response. CONCLUSIONS: CD24+LCN2+ LPCs constituted the expanding ductular reaction and contributed to macrophage-mediated inflammation in chronic liver damage. The current findings highlight the roles of LPCs from distinct origins and expose the possibility of targeting LPCs in the treatment of chronic hepatic diseases.

6.
Front Oncol ; 13: 1028179, 2023.
Article in English | MEDLINE | ID: mdl-37007102

ABSTRACT

In recent years, although new drugs and molecular markers have been used to treat metastatic colorectal cancer, there has been little progress in the immunotherapy of advanced colon cancer. The development of sequencing and multiomics technology helps us classify patients more accurately, and then find patients who may benefit from immunotherapy. The development of this advanced technology and immunotherapy based on new targets may herald a new era in the treatment of metastatic colorectal cancer. It is well known that colorectal cancer with dmmr/msi-h phenotype is sensitive to immunotherapy, yet the POLE mutation is the MSS phenotype in colorectal tumors but is also an effective target for immunotherapy. This paper describes a case of recurrent intestinal leakage that required multiple surgical procedures. A high-grade colon adenocarcinoma was identified on surgical histopathology after 18 months, and bevacizumab combined with oxaliplatin and capecitabine proved ineffective against this cancer. An analysis of gene expression indicated that POLE (P286R) mutation, TMB 119.333 mutation per 100 MB, and immune checkpoint inhibitor treatment had a significant impact. This case reminds us that the existence of malignant tumors should be considered for patients with repeated intestinal leakage, and emphasizes the importance of gene detection in the treatment of malignant tumors and the significance of POLE mutations in colorectal cancer.

7.
Cell Death Discov ; 9(1): 72, 2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36813783

ABSTRACT

Cancer heterogeneity has posed a great challenge to traditional cancer treatment, with the reappearance of cancer heterogeneity of inter and intra patients being especially critical. Based on this, personalized therapy has emerged as significant research focus in recent and even future years. Cancer-related therapeutic models are developing, including cell lines, patient-derived xenografts, organoids, etc. Organoids are three-dimensional in vitro models emerged in the past dozen years and are able to reproduce the cellular and molecular composition of the original tumor. These advantages demonstrate the great potential for patient-derived organoids to develop personalized anticancer therapies, including preclinical drug screening and the prediction of patient treatment response. The impact of microenvironment on cancer treatment cannot be underestimated, and the remodeling of microenvironment also allows organoids to interact with other technologies, among which organs-on-chips is a representative one. This review highlights the use of organoids and organs-on-chips as complementary reference tools in treating colorectal cancer from the perspective of clinical efficacy predictability. We also discuss the limitations of both techniques and how they complement each other well.

8.
Pharmacol Res ; 187: 106583, 2023 01.
Article in English | MEDLINE | ID: mdl-36574578

ABSTRACT

The heterogeneity of tumor immune microenvironment (TIME) plays important roles in the development and immunotherapy response of hepatocellular carcinoma (HCC). Using machine learning algorithms, we introduced the immune index (IMI), a prognostic model based on the HCC immune landscape. We found that IMI low HCCs were enriched in stem cell and proliferating signatures, and yielded more TP53 mutation and 17p loss compared with IMI high HCCs. More importantly, patients with high IMI exhibited better immune-checkpoint blockade (ICB) response. To facilitate clinical application, we employed machine learning algorithms to develop a gene model of the IMI (IMIG), which contained 10 genes. According to our HCC cohort examination and single-cell level analysis, we found that IMIG high HCCs exhibited favorable survival outcomes and high levels of NK and CD8+ T cells infiltration. Finally, after coculture with autologous tumor infiltrating lymphocytes, IMIG high tumor cells exhibited a better response to nivolumab treatment. Collectively, the IMI and IMIG may serve as powerful tools for the prognosis, classification and ICB treatment response prediction of HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Prognosis , CD8-Positive T-Lymphocytes , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Immunotherapy , Tumor Microenvironment
9.
Front Immunol ; 13: 803962, 2022.
Article in English | MEDLINE | ID: mdl-35222383

ABSTRACT

Pancreatic cancer (PACA), which is characterized by an immunosuppressive nature, remains one of the deadliest malignancies worldwide. Aberrant DNA methylation (DNAm) reportedly influences tumor immune microenvironment. Here, we evaluated the role of DNA methylation driven genes (MDGs) in PACA through integrative analyses of epigenomic, transcriptomic, genomic and clinicopathological data obtained from TCGA, ICGC, ArrayExpress and GEO databases. Thereafter, we established a four-MDG signature, comprising GPRC5A, SOWAHC, S100A14, and ARNTL2. High signature risk-scores were associated with poor histologic grades and late TNM stages. Survival analyses showed the signature had a significant predictive effect on OS. WGCNA revealed that the signature may be associated with immune system, while high risk-scores might reflect immune dysregulation. Furthermore, GSEA and GSVA revealed significant enrichment of p53 pathway and mismatch repair pathways in high risk-score subgroups. Immune infiltration analysis showed that CD8+ T cells were more abundant in low score subgroups, while M0 macrophages exhibited an opposite trend. Moreover, negative regulatory genes of cancer-immunity cycle (CIC) illustrated that immunosuppressors TGFB1, VEGFA, and CD274 (PDL1) were all positively correlated with risk-scores. Furthermore, the four signature genes were negatively correlated with CD8+ lymphocytes, but positively associated with myeloid derived suppressor cells (MDSC). Conversely, specimens with high risk-scores exhibited heavier tumor mutation burdens (TMB) and might show better responses to some chemotherapy and targeted drugs, which would benefit stratification of PACA patients. On the other hand, we investigated the corresponding proteins of the four MDGs using paraffin-embedded PACA samples collected from patients who underwent radical surgery in our center and found that all these four proteins were elevated in cancerous tissues and might serve as prognostic markers for PACA patients, high expression levels indicated poor prognosis. In conclusion, we successfully established a four-MDG-based prognostic signature for PACA patients. We envisage that this signature will help in evaluation of intratumoral immune texture and enable identification of novel stratification biomarkers for precision therapies.


Subject(s)
DNA Methylation , Pancreatic Neoplasms , DNA , Humans , Pancreatic Neoplasms/pathology , Prognosis , Receptors, G-Protein-Coupled/genetics , Tumor Microenvironment/genetics , Pancreatic Neoplasms
10.
Adv Sci (Weinh) ; 9(20): e2103887, 2022 07.
Article in English | MEDLINE | ID: mdl-35187863

ABSTRACT

Cancer cells are addicted to glutamine. However, cancer cells often suffer from glutamine starvation, which largely results from the fast growth of cancer cells and the insufficient vascularization in the interior of cancer tissues. Herein, based on clinical samples, patient-derived cells (PDCs), and cell lines, it is found that liver cancer cells display stem-like characteristics upon glutamine shortage due to maintaining the stemness of tumor initiating cells (TICs) and even promoting transformation of non-TICs into stem-like cells by glutamine starvation. Increased expression of glutamine synthetase (GS) is essential for maintaining and promoting stem-like characteristics of liver cancer cells during glutamine starvation. Mechanistically, glutamine starvation activates Rictor/mTORC2 to induce HDAC3-mediated deacetylation and stabilization of GS. Rictor is significantly correlated with the expression of GS and stem marker OCT4 at tumor site, and closely correlates with poor prognosis of hepatocellular carcinomas. Inhibiting components of mTORC2-HDAC3-GS axis decrease TICs and promote xenografts regression upon glutamine-starvation therapy. Collectively, the data provides novel insights into the role of Rictor/mTORC2-HDAC3 in reprogramming glutamine metabolism to sustain stemness of cancer cells. Targeting Rictor/HDAC3 may enhance the efficacy of glutamine-starvation therapy and limit the rapid growth and malignant progression of tumors.


Subject(s)
Liver Neoplasms , Cell Line , Glutamate-Ammonia Ligase , Glutamine/deficiency , Glutamine/metabolism , Histone Deacetylases , Humans , Mechanistic Target of Rapamycin Complex 2/metabolism , Transcription Factors
11.
Eur J Cancer Prev ; 31(5): 430-441, 2022 09 01.
Article in English | MEDLINE | ID: mdl-34991112

ABSTRACT

BACKGROUND: Second primary cancer (SPC) after primary colorectal cancer (CRC), emerges as a novel challenge for cancer prevention with pronounced differences between female and male patients. METHODS: This was a retrospective study of 140 907 CRC survivors from the surveillance, epidemiology, and end results program database. Competing risk models and nomograms were constructed to predict the risk of SPCs, which were assessed with the C-Index, calibration and decision curve analysis. RESULTS: The 10-year cumulative incidence of SPC was higher in male than in female CRC survivors. The top five common SPCs in female CRC survivors were colorectal, breast, lung and bronchus, corpus and uterus and pancreatic cancers, while in male were prostate, colorectal, lung and bronchus, urinary cancer and melanoma of the skin. Breast and prostate were the most common sites for the development of SPCs after CRC. Older age, stage I and surgery were common risk factors for SPCs in both female and male. The nomogram for predicting the risk of developing SPC-breast cancer in female patients included age, race, site, histology grade, surgery, chemotherapy and stage. However, the model of predicting SPC-prostate cancer in male patients included age, race, site, size, surgery, chemotherapy, radiation and stage. Notably, the nomograms were validated to have a precise discriminative ability, accuracy and clinical effectiveness. CONCLUSIONS: The study surveyed the characteristics of CRC survivors with a particular focus on the incidence of SPC. The models could help supervise the development of a second breast or prostate cancer in female or male CRC survivors.


Subject(s)
Colorectal Neoplasms , Neoplasms, Second Primary , Prostatic Neoplasms , Colorectal Neoplasms/complications , Colorectal Neoplasms/epidemiology , Humans , Incidence , Male , Neoplasms, Second Primary/epidemiology , Prostatic Neoplasms/epidemiology , Retrospective Studies , Risk Factors , SEER Program
12.
Cancer Med ; 10(23): 8708-8719, 2021 12.
Article in English | MEDLINE | ID: mdl-34697912

ABSTRACT

BACKGROUND: Some significant differences exist between the outcomes of left- and right-sided colon cancer patients. The presence of nodal metastases is a critical prognostic factor, especially in the absence of distant metastasis. Our research studied the lymph nodes status of left- and right-sided colon cancer patients to determine the influence of this factor on prognosis. METHODS: Our data were obtained from the Surveillance, Epidemiology and End Results (SEER) database. We used the chi-square test to analyze the clinicopathological characteristics. The X-tile program was adopted to acquire optimal cutoff points of lymph node index. Kaplan-Meier curves were used to analyze prognosis and multivariate Cox regression models were performed to identify the independent factors associated with survival. Nomograms were built to predict the overall survival of patients, Harrell's C-index and calibration plots were used to validate the nomograms. RESULTS: The study included 189,941 patients with colon cancer without metastasis (left 69,885, right 120,056) between 2004 and 2015. There are more patients with adequate examined lymph nodes in right-sided. Lymph node status in patients with right colon cancer has a more significant impact on the risk of death. LODDS (C-index: 0.583; AIC: 6875.4) was used to assess lymph node status. The nomograms showed that lymph node status was the main factor to predict the outcome in right-sided colon patients. CONCLUSIONS: The influence of lymph node status on predicting prognosis is significantly different between patients with left and right colon cancer without metastasis. The tumor site needs to be considered when lymph node status is used to assess the outcome of patients.


Subject(s)
Colonic Neoplasms/mortality , Colonic Neoplasms/pathology , Lymphatic Metastasis/pathology , Aged , China , Female , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Prognosis , Risk Factors , SEER Program
13.
Theranostics ; 11(16): 7620-7639, 2021.
Article in English | MEDLINE | ID: mdl-34335954

ABSTRACT

Rationale: Acute liver failure (ALF) causes severe liver injury and a systemic inflammatory response, leading to multiorgan failure with a high short-term mortality. Bioartificial liver (BAL) therapy is a promising approach that is hampered by the lack of appropriate bioreactors and carriers to retain hepatic cell function and poor understanding of BAL treatment mechanisms in ALF and extrahepatic organ injury. Recently, we used a fiber scaffold bioreactor (FSB) for the high-density, three-dimensional (3D) culture of primary porcine hepatocytes (PPHs) combined with an absorption component to construct a BAL and verified its function in a D-galactosamine (D-gal)-induced ALF porcine model to evaluate its protective effects on the liver and extrahepatic organs. Methods: Male pigs were randomized into standard/supportive therapy (ST), ST+no-cell BAL (ST+Sham BAL) and ST+BAL groups and received treatment 48 h after receiving a D-gal injection. Changes in blood chemistry and clinical symptoms were monitored for 120 h. Tissues and plasma were collected for analysis by pathological examination, immunoblotting, quantitative PCR and immunoassays. Results: PPHs cultured in the FSB obtained sufficient aeration and nutrition for high-density, 3D culture and maintained superior viability and functionality (biosynthesis and detoxification) compared with those cultured in flasks. All the animals developed ALF, acute kidney injury (AKI) and hepatic encephalopathy (HE) 48 h after D-gal infusion and received corresponding therapies. Animals in the BAL group showed markedly improved survival (4/5; 80%) compared with those in the ST+Sham BAL (0/5; p < 0.001) and ST (0/5; p < 0.001) groups. The levels of blood ammonia and biochemical and inflammatory indices were alleviated after BAL treatment. Increased liver regeneration and attenuations in the occurrence and severity of ALF, AKI and HE were observed in the ST+BAL group compared with the ST (p = 0.0009; p = 0.038) and ST+Sham BAL (p = 0.011; p = 0.031) groups. Gut leakage, the plasma endotoxin level, bacterial translocation, and peripheral and neuroinflammation were alleviated in the ST+BAL group compared with those in the other groups. Conclusions: BAL treatment enhanced liver regeneration and alleviated the systemic inflammatory response and extrahepatic organ injury to prolong survival in the ALF model and has potential as a therapeutic approach for ALF patients.


Subject(s)
Liver Failure, Acute/therapy , Tissue Engineering/methods , Animals , Artificial Organs , Bioreactors , China , Disease Models, Animal , Hepatocytes/cytology , Liver/pathology , Liver Failure, Acute/pathology , Liver, Artificial/veterinary , Male , Swine , Tissue Scaffolds
14.
Ann Transl Med ; 9(9): 810, 2021 May.
Article in English | MEDLINE | ID: mdl-34268423

ABSTRACT

Deregulation of many homeobox genes has been observed in various cancers and has caused functional implications in the tumor progression. In this review, we will focus on the roles of the human muscle segment homeobox (MSX) transcription factor family in the process of tumorigenesis. The MSX transcription factors, through complex downstream regulation mechanisms, are promoters or inhibitors of diverse cancers by participating in cell proliferation, cell invasion, cell metastasis, cell apoptosis, cell differentiation, drug resistance of tumors, maintenance of tumor stemness, and tumor angiogenesis. Moreover, their upstream regulatory mechanisms in cancers may include: gene mutation and chromosome aberration; DNA methylation and chromatin modification; regulation by non-coding RNAs; regulation by other transcription factors and post-translational modification. These mechanisms may provide a better understanding of why MSX transcription factors are abnormally expressed in tumors. Notably, intermolecular interactions and post-translational modification can regulate the transcriptional activity of MSX transcription factors. It is also crucial to know what affects the transcriptional activity of MSX transcription factors in tumors for possible interventions in them in the future. This systematic summary of the regulatory patterns of the MSX transcription factor family may help to further understand the mechanisms involved in transcriptional regulation and also provide new therapeutic approaches for tumor progression.

15.
Cell Death Dis ; 12(8): 752, 2021 07 30.
Article in English | MEDLINE | ID: mdl-34330892

ABSTRACT

Alternative splicing (AS) is an important event that contributes to posttranscriptional gene regulation. This process leads to several mature transcript variants with diverse physiological functions. Indeed, disruption of various aspects of this multistep process, such as cis- or trans- factor alteration, promotes the progression of colorectal cancer. Therefore, targeting some specific processes of AS may be an effective therapeutic strategy for treating cancer. Here, we provide an overview of the AS events related to colorectal cancer based on research done in the past 5 years. We focus on the mechanisms and functions of variant products of AS that are relevant to malignant hallmarks, with an emphasis on variants with clinical significance. In addition, novel strategies for exploiting the therapeutic value of AS events are discussed.


Subject(s)
Alternative Splicing/genetics , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/genetics , RNA, Messenger/genetics , Animals , Apoptosis/genetics , Colorectal Neoplasms/blood supply , Colorectal Neoplasms/therapy , Humans , Protein Processing, Post-Translational , RNA, Messenger/metabolism , Spliceosomes/metabolism
16.
Theranostics ; 11(11): 5539-5552, 2021.
Article in English | MEDLINE | ID: mdl-33859762

ABSTRACT

Rationale: We developed a cocktail of soluble molecules mimicking the in vivo milieu supporting liver regeneration that could convert mature hepatocytes to expandable liver progenitor-like cells in vitro. This study aimed to induce endogenous liver progenitor cells by the administration of the soluble molecules to provide an alternative approach for the resolution of liver fibrosis. Methods:In vitro cultured hepatocyte-derived liver progenitor-like cells (HepLPCs) were transplanted into CCL4-treated mice to investigate the therapeutic effect against liver fibrosis. Next, we used HGF in combination with a cocktail of small molecules (Y-27632, A-83-01, and CHIR99021 (HACY)) to induce endogenous CD24+ liver progenitor cells and to inhibit the activation of hepatic stellate cells (HSCs) during CCL4-induced hepatic injury. RNA sequencing was performed to further clarify the features of HACY-induced CD24+ cells compared with CCL4-induced CD24+ cells and in vitro derived HepLPCs. Finally, we evaluated the expansion of HACY-induced CD24+ cells in human hepatocyte-spheroids from fibrotic liver tissues. Results: HepLPCs exhibited the capacity to alleviate liver fibrosis after transplantation into CCL4-treated mice. The in vivo administration of HACY not only induced the conversion of mature hepatocytes (MHs) to CD24+ progenitor cells but prevented the activation of HSCs, thus leading to enhanced improvement of liver fibrosis in CCL4-treated mice. Compared to CD24+ cells induced by CCL4 alone, HACY-induced CD24+ cells retained an enhanced level of hepatic function and could promote the restoration of liver function that exhibited comparable gene expression profiles with HepLPCs. CD24+ cells were also observed in human liver fibrotic tissues and were expanded in three-dimensional (3D) hepatic spheroids in the presence of HACY in vitro. Conclusions: Hepatocyte-derived liver progenitor-like cells are crucial for liver regeneration during chronic hepatic injuries. The administration of HACY, which allowed the induction of endogenous CD24+ progenitor cells and the inactivation of HSCs, exerts beneficial effects in the treatment of liver fibrosis by re-establishing a balance favoring liver regeneration while preventing fibrotic responses.


Subject(s)
Hepatic Stellate Cells/drug effects , Liver Cirrhosis/drug therapy , Liver/drug effects , Small Molecule Libraries/pharmacology , Stem Cells/drug effects , Amides/pharmacology , Animals , CD24 Antigen/metabolism , Carbon Tetrachloride/pharmacology , Cells, Cultured , Gene Expression/drug effects , Hepatic Stellate Cells/metabolism , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , Liver/metabolism , Liver Cirrhosis/metabolism , Liver Regeneration/drug effects , Male , Mice , Mice, Inbred C57BL , Pyridines/pharmacology , Pyrimidines/pharmacology , Stem Cells/metabolism
17.
Front Oncol ; 11: 650937, 2021.
Article in English | MEDLINE | ID: mdl-33777813

ABSTRACT

Background: Previous studies have revealed an increased risk of second primary malignancies (SPMs) after colorectal cancer (CRC); however, no previous investigation has quantified differences in the risk of SPMs based on the histological subtypes of first primary CRC. Methods: Patients diagnosed with first primary CRC between 2000 and 2011 were identified from the Surveillance, Epidemiology, and End Results cancer registries. The patients were divided into three cohorts: classical adenocarcinoma (CA), mucinous adenocarcinoma (MA), and signet-ring cell carcinoma (SRCC). Standardized incidence ratios were calculated to assess the risk of SPMs among the patients. Results: Overall risk of SPMs was significantly higher among patients with three histological subtypes of CRC than in the general population. The risk of esophagus cancer was significantly increased in SRCC. The risk of small intestine, colon and rectum, and corpus uteri cancers was high in three histological subtypes, with the highest risk observed in SRCC, followed by MA. Increased risks of second stomach, uterus, urinary bladder, kidney, and thyroid cancers were only observed in CA patients, while increased risk of second renal pelvis cancer was limited to MA patients. Furthermore, the high overall risk of SPMs in CA patients persisted regardless of clinicopathological factors. After surgery combined with chemotherapy treatment, CA patients were more prone to developing second small intestine, colon and rectum cancers than those treated with surgery only. A lower second prostate cancer risk was observed in rectal CA patients treated with surgery combined with radiotherapy than in patients treated with surgery only. Conclusion: The present study revealed that the risk of developing SPMs after CRC varied based on the histological subtypes of the first primary CRC. Although the mechanisms underlying the observed patterns of SPM risk remain unknown, the study provided insights into future cancer surveillance based on the histological subtypes of CRC.

18.
Sci Transl Med ; 12(551)2020 07 08.
Article in English | MEDLINE | ID: mdl-32641490

ABSTRACT

Clinical advancement of the bioartificial liver is hampered by the lack of expandable human hepatocytes and appropriate bioreactors and carriers to encourage hepatic cells to function during extracorporeal circulation. We have recently developed an efficient approach for derivation of expandable liver progenitor-like cells from human primary hepatocytes (HepLPCs). Here, we generated immortalized and functionally enhanced HepLPCs by introducing FOXA3, a hepatocyte nuclear factor that enables potentially complete hepatic function. When cultured on macroporous carriers in an air-liquid interactive bioartificial liver (Ali-BAL) support device, the integrated cells were alternately exposed to aeration and nutrition and grew to form high-density three-dimensional constructs. This led to highly efficient mass transfer and supported liver functions such as albumin biosynthesis and ammonia detoxification via ureagenesis. In a porcine model of drug overdose-induced acute liver failure (ALF), extracorporeal Ali-BAL treatment for 3 hours prevented hepatic encephalopathy and led to markedly improved survival (83%, n = 6) compared to ALF control (17%, n = 6, P = 0.02) and device-only (no-cell) therapy (0%, n = 6, P = 0.003). The blood ammonia concentrations, as well as the biochemical and coagulation indices, were reduced in Ali-BAL-treated pigs. Ali-BAL treatment attenuated liver damage, ameliorated inflammation, and enhanced liver regeneration in the ALF porcine model and could be considered as a potential therapeutic avenue for patients with ALF.


Subject(s)
Liver Failure, Acute , Liver, Artificial , Albumins , Animals , Hepatocytes , Humans , Liver , Liver Failure, Acute/therapy , Swine
19.
Article in English | MEDLINE | ID: mdl-32087972

ABSTRACT

In both normal turnover of the hepatic tissue and acute hepatic injury, the liver predominantly activates terminally differentiated hepatocytes to proliferate and repair. However, in chronic and severe chronic injury, this capacity fails, and liver progenitor cells (LPCs) can give rise to hepatocytes to restore both hepatic architecture and liver metabolic function. Although the promotion of LPC-to-hepatocyte differentiation to acquire a considerable number of functional hepatocytes could serve as a potentially new therapeutic option for patients with end-stage liver disease, its development first requires the identification of the molecular mechanisms driving this process. Here, we found that the epithelial cell adhesion molecule (EpCAM), a progenitor cell marker, regulates the differentiation of LPCs into hepatocytes through Notch1 signaling pathway. Western blotting (WB) revealed a consistent expression pattern of EpCAM and Notch1 during LPC-to-hepatocyte differentiation in vitro. Additionally, overexpression of EpCAM blocked LPC-to-hepatocyte differentiation, which was in consistent with the repressive role of Notch signaling during hepatic differentiation. WB and immunofluorescence data also showed that the upregulation of EpCAM expression increased the generation of Notch intracellular domain (N1ICD), indicating the promotion of Notch1 activity. Our results established the EpCAM-Notch1 signaling axis as an inhibitory mechanism preventing LPC-to-hepatocyte differentiation in vitro.

20.
Theranostics ; 9(22): 6690-6705, 2019.
Article in English | MEDLINE | ID: mdl-31588244

ABSTRACT

Rationale: The idiosyncratic drug-induced liver injury (iDILI) is a major cause of acute liver injury and a key challenge in late-stage drug development. Individual heterogeneity is considered to be an essential factor of iDILI. However, few in vitro model can predict heterogeneity in iDILI. We have previously shown that mouse and human hepatocytes can be converted to expandable liver progenitor-like cells in vitro (HepLPCs). However, the limited proliferation potential of human HepLPCs confines its industrial application. Here, we reported the generation of a novel hepatocyte model not only to provide unlimited cell sources for human hepatocytes but also to establish a tool for studying iDILI in vitro. Methods: Human primary hepatocytes were isolated by modified two-step perfusion technique. The chemical reprogramming culture condition together with gene-transfer were then used to generate the immortalized HepLPC cell lines (iHepLPCs). Growth curve, doubling time, and karyotype were analyzed to evaluate the proliferation characteristics of iHepLPCs. Modified Hepatocyte Maturation Medium and 3D spheroid culture were applied to re-differentiate iHepLPCs. Results: iHepLPCs exhibited efficient expansion for at least 40 population doublings, with a stable proliferative ability. They could easily differentiate back into metabolically functional hepatocytes in vitro within 10 days. Furthermore, under three-dimensional culture conditions, the formed hepatic spheroids showed multiple liver functions and toxicity profiles close to those of primary human hepatocytes. Importantly, we established a hepatocyte bank by generating a specific number of such cell lines. Screening for population heterogeneity allowed us to analyze the in vitro heterogeneous responses to hepatotoxicity induced by molecular targeted drugs. Conclusions: In light of the proliferative capacity and the heterogeneity they represented, these iHepLPCs cell lines may offer assistance in studying xenobiotic metabolism as well as liver diseases in vitro.


Subject(s)
Antineoplastic Agents/adverse effects , Chemical and Drug Induced Liver Injury/etiology , Gene Expression Regulation/drug effects , Hepatocytes/cytology , Toxicity Tests/methods , Apoptosis/drug effects , Cell Differentiation , Cell Proliferation , Cells, Cultured , Chemical and Drug Induced Liver Injury/pathology , Cytochrome P-450 Enzyme System/metabolism , Dose-Response Relationship, Drug , Hep G2 Cells , Humans , Molecular Targeted Therapy/adverse effects , Spheroids, Cellular/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...