Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters











Publication year range
1.
Small ; : e2405789, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39319480

ABSTRACT

Zwitterionic hydrogels exhibit great potential in biomedical applications due to their antifouling properties and biocompatibility. However, the single-network structure of pure zwitterionic hydrogels leads to a low toughness and strength, limiting their application in biomedical fields. In this work, a high entanglement sulfobetaine methacrylate-dopamine hydrogel (SBMA-DA-PE) with low cross-linker content and high monomer concentration is prepared by using a dopamine oxidative radical polymerization method. Compared to a regular zwitterionic hydrogel, the SBMA-DA-PE hydrogel exhibits a 5-fold increase in tensile fracture stress and a 10-fold increase in compressive fracture stress. The SBMA-DA-PE hydrogel possesses excellent mechanical properties (the maximum compressive stress ≥4.85 MPa, the maximum compressive strain ≥90%). Besides, the non-covalent interactions between catechol or ortho-quinones within the SBMA-DA-PE hydrogel, combined with strong intermolecular electrostatic interactions, endow the SBMA-DA-PE hydrogel with great self-healing capabilities and fatigue resistance. The SBMA-DA-PE hydrogel demonstrates low swellability and possesses good antifouling properties. Furthermore, the good printability and conductivity of the tough SBMA-DA-PE hydrogel endows it with new possibilities for developing biological 3D scaffolds and electronic devices. Overall, this work provides new insights into the preparation of zwitterionic hydrogels with high mechanical strength and multi-functionality for biomedical applications.

2.
Toxics ; 12(8)2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39195634

ABSTRACT

Cadmium (Cd) contamination in agricultural soils has emerged as a significant concern, particularly due to its potential impact on plant-based food. Soil pH reductions can exacerbate Cd mobility, leading to excessive accumulation in crops. While liming has been demonstrated as an effective method to mitigate Cd accumulation in rice grains in acid soils of southern China, its efficacy in remediating acid soils in northern China remains unclear. In this study, a multi-year field experiment was conducted on farmland impacted by zinc ore smelting at coordinates of 33.92° N 112.46° E to investigate the use of limestone for controlling Cd accumulation in wheat and maize grains. The results indicated that applying 7.5 t ha-1 of limestone significantly raised the soil pH from 4.5 to 6.8 as anticipated. Different rates of limestone application (2.25, 4.45, and 7.50 t ha-1) reduced Cd bioavailability in the soil by 20-54%, and Cd accumulation in wheat grains by 5-38% and maize grains by 21-63%, without yield penalty. The remediation effects were sustained for at least 27 months, highlighting limestone as a promising ameliorant for smelting-affected farmland in northern China.

3.
Chemosphere ; 357: 142070, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38641297

ABSTRACT

Calcium (Ca2+) and phosphorous (PO43-) significantly influence the form and effectiveness of nitrogen (N), however, the precise mechanisms governing the adsorption of ammonium nitrogen (NH4+-N) and nitrate nitrogen (NO3--N) are still lacking. This study employed batch adsorption experiments, charge distribution and multi-site complexation (CD-MUSIC) models and density functional theory (DFT) calculations to elucidate the mechanism by which Ca2+ and PO43- affect the adsorption of NH4+-N and NO3--N on the goethite (GT) surface. The results showed that the adsorption of NH4+-N on the GT exhibited an initial increase followed by a decrease as pH increased, peaking at a pH of 8.5. Conversely, the adsorption of NO3--N decreased with rising pH. According to the CD-MUSIC model, Ca2+ minimally affected the NH4+-N adsorption on the GT but enhanced NO3--N adsorption via electrostatic interaction, promoting the adsorption of ≡FeOH-NO3- and ≡Fe3O-NO3- species. Similarly, PO43- inhibited the adsorption of ≡FeOH-NO3- and ≡Fe3O-NO3- species. However, PO43- boosted NH4+-N adsorption by facilitating the formation of ≡Fe3O-NH4+ via electrostatic interaction and site competition. DFT calculations indicates that although bidentate phosphate (BP) was beneficial to stabilize NH4+-N than monodentate phosphate (SP), SP-NH4+ was the main adsorption configuration at pH 5.5-9.5 owing the prevalence of SP on the GT surface under site competition of NH4+-N. The results of CD-MUSIC model and DFT calculation were verified mutually, and provide novel insights into the mechanisms underlying N fixation and migration in soil.


Subject(s)
Ammonium Compounds , Calcium , Density Functional Theory , Nitrates , Nitrogen , Phosphorus , Adsorption , Calcium/chemistry , Nitrogen/chemistry , Phosphorus/chemistry , Nitrates/chemistry , Ammonium Compounds/chemistry , Ferric Compounds/chemistry , Models, Chemical , Hydrogen-Ion Concentration
4.
Chemosphere ; 352: 141295, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38309605

ABSTRACT

Hierarchically porous magnetic biochar (HMB) had been found to act as an effective amendment to remediate cadmium (Cd) in water and soil in a previous study, but the effects on wheat growth, Cd uptake and translocation mechanisms, and soil microorganisms were unknown. Therefore, soil Cd form transformation, soil enzyme activity, soil microbial diversity, wheat Cd uptake and migration, and wheat growth were explored by adding different amounts of HMB to alkaline Cd-contaminated soil under pot experiments. The results showed that application of HMB (0.5 %-2.0 %) raised soil pH, electrical conductivity (EC) and available Fe concentration, decreased soil available Cd concentration (35.11 %-50.91 %), and promoted Cd conversion to less bioavailable Cd forms. HMB treatments could reduce Cd enrichment in wheat, inhibit Cd migration from root to stem, rachis to glume, glume to grain, and promote Cd migration from stem to leaf and stem to rachis. HMB (0.5 %-1.0 %) boosted antioxidant enzyme activity, reduced oxidative stress, and enhanced photosynthesis in wheat seedlings. Application of 1.0 % HMB increased wheat grain biomass by 40.32 %. Besides, the addition of HMB (0.5 %-1.0 %) could reduce soil Cd bioavailability, increase soil enzyme activity, and increase the abundance and diversity of soil bacteria. Higher soil EC brought forth by HMB (2.0 %) made the wheat plants and soil bacteria poisonous. This study suggests that applying the right amount of HMB to alkaline Cd-contaminated soil could be a potential remediation strategy to decrease Cd in plants' edible parts and enhance soil quality.


Subject(s)
Microbiota , Soil Pollutants , Cadmium/toxicity , Cadmium/analysis , Soil/chemistry , Triticum , Porosity , Soil Pollutants/analysis , Charcoal/chemistry , Edible Grain/chemistry , Antioxidants/analysis , Magnetic Phenomena
5.
Plant Physiol Biochem ; 206: 108199, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38100890

ABSTRACT

Cadmium (Cd) contamination is a serious challenge in agricultural soils worldwide, resulting in Cd entering the food chain mainly through plant-based food and threatening human health. Minimizing Cd bioaccumulation in wheat is an important way to prevent Cd hazards to humans. Hydroponic and pot experiments were conducted to comprehensively evaluate the effects of zinc sulfate (ZnSO4) and zinc oxide nanoparticles (nZnO) on Cd uptake, translocation, subcellular distribution, cellular ultrastructure, and gene expression in two wheat genotypes that differ in grain Zn accumulation. Results showed that high-dose nZnO significantly reduced root Cd concentration (52.44%∼56.85%) in two wheats, in contrast to ZnSO4. The S216 exhibited higher tolerance to Cd compared to Z797. Importantly, Zn supplementation enhanced Cd sequestration into vacuoles and binding to cell walls, which conferred stability to ultracellular structures and photosynthetic apparatus. Down-regulation of influx transporter (TaHMA2 and TaLCT1) and up-regulation of efflux transporters (TaTM20 and TaHMA3) in Z797 might contribute to Zn-dependent alleviation of Cd toxicity and enhance its Cd tolerance. Down-regulation of ZIP transporters (TaZIP3, -5, and -7) might contribute to an increase in root Zn concentration and inhibit Cd absorption. Additionally, soil Zn provided an effective strategy for the reduction of grain Cd concentrations in both wheats, with a reduction of 26%∼32% (high ZnSO4) and 11%∼67% (high nZnO), respectively. Collectively, these findings provide new insights and perspectives on the mechanisms of Cd mitigation in wheats with different Zn fertilizers and demonstrate that the effect of nZnO in mitigating Cd stress is greater than that of ZnSO4 fertilizers.


Subject(s)
Nanoparticles , Soil Pollutants , Zinc Oxide , Humans , Zinc Oxide/pharmacology , Cadmium/metabolism , Zinc/pharmacology , Zinc/metabolism , Triticum/metabolism , Fertilizers , Soil , Membrane Transport Proteins/metabolism , Gene Expression , Soil Pollutants/metabolism
6.
Molecules ; 28(12)2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37375182

ABSTRACT

In this study, grand canonical Monte Carlo simulations (GCMC) and molecular dynamics simulations (MD) were used to construct models of activated carbon with hydroxyl-modified hexachlorobenzene basic unit contents of 0%, 12.5%, 25%, 35% and 50%. The mechanism of adsorption of carbon disulfide (CS2) by hydroxyl-modified activated carbon was then studied. It is found that the introduction of hydroxyl functional groups will improve the adsorption capacity of activated carbon for carbon disulfide. As far as the simulation results are concerned, the activated carbon model containing 25% hydroxyl modified activated carbon basic units has the best adsorption performance for carbon disulfide molecules at 318 K and atmospheric pressure. At the same time, the changes in the porosity, accessible surface area of the solvent, ultimate diameter and maximum pore diameter of the activated carbon model also led to great differences in the diffusion coefficient of carbon disulfide molecules in different hydroxyl-modified activated carbons. However, the same adsorption heat and temperature had little effect on the adsorption of carbon disulfide molecules.

7.
Water Res ; 218: 118489, 2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35489151

ABSTRACT

Tetracycline (TC) has been frequently detected in various environments, thus promoting the occurrence of resistance in bacterial populations. In this study, a suite of soybean straw biochars (SSBs) were fabricated under different pyrolysis temperatures (600-1000 °C), which were utilized as peroxydisulfate (PS) activators for TC degradation and TC resistant Escherichia coli (E. coli) disinfection. The purification effect of SSBs/PS systems manifested obvious positive dependence on pyrolysis temperature of SSBs with SSB1000/PS system obtained the superior TC degradation, E. coli disinfection and coexisting TC and E. coli elimination capacity. The leakage of intracellular DNA and the degradation of total DNA and extracellular DNA was revealed no matter in alone E. coli or combined pollution which can also be supported by the gradual ruptured bacterial morphology and attenuated internal components. It can be found that TC adsorption in SSBs played a significant role on TC degradation, while the electrostatic repulsion always existed between E. coli and SSB1000. Furthermore, a battery of solid evidences collectively demonstrated the significant different purification mechanism of TC and E. coli. The TC degradation was achieved dominantly by surface-bound radicals, while bactericidal activity should be attributed to free SO4·- in bulk solutions. In contrast to other SSBs, the largest mesopore volumes, highest C=O content, lowest interfacial charge transfer resistance and strongest electron donating capacity explained the outperformed catalytic performance of SSB1000.


Subject(s)
Glycine max , Tetracycline Resistance , Anti-Bacterial Agents/pharmacology , Bacteria , Charcoal , Escherichia coli , Tetracycline/pharmacology
8.
Plant Sci ; 318: 111237, 2022 May.
Article in English | MEDLINE | ID: mdl-35351309

ABSTRACT

Screening and breeding of high-Zn-accumulating wheat cultivars have received increasing attention in recent years. However, the exact mechanism of Zn uptake and accumulation in wheat is not fully understood. Here, we investigated the physiological responses and TaZIPs gene expression in a low (Zhengmai0856, ZM0856) and a high (Aikang58, AK58) grain-Zn-accumulating wheat cultivars under hydroponic conditions with different levels of Zn supply. Results showed that AK58 was a Zn sensitive cultivar with better growth advantage, while ZM0856 was a Zn tolerant cultivar with higher capacity of Zn uptake. In addition, gene expression analysis showed that, the expression levels of the TaZIP3, TaZIP5, and TaZIP7 in roots were increased in both cultivars under Zn deficiency. In shoots, TaZIP3 and TaZIP6 transcript accumulation was lower in AK58 than ZM0856, whereas TaZIP7 showed the opposite effect. Moreover, multivariate statistical analysis (Pearson's correlation and PCA) showed that the mechanisms involved in Zn uptake and translocation was closely related to subcellular biosynthesis and ZIP gene expression regulation, whereas adequate Zn supply improved the Zn uptake and root-to-shoot translocation. These novel findings might be helpful for the molecular-assisted selecting and breeding of Zn-rich wheat cultivars.


Subject(s)
Seedlings , Triticum , Edible Grain/genetics , Edible Grain/metabolism , Plant Breeding , Seedlings/metabolism , Triticum/metabolism , Zinc/metabolism
9.
Chemosphere ; 281: 130990, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34289633

ABSTRACT

Three types of hierarchically porous magnetic biochars (HMBs) were prepared by pyrolyzing low-cost wheat straw and potassium ferrate (K2FeO4) under a nitrogen atmosphere at 600, 700 and 800 °C, respectively, which could be used as amendments for cadmium (Cd) in water and soil. HMB fabricated at 700 °C (HMB700) had the best remediation performance for Cd in water and soil, which was mainly due to its largest specific surface area and micropore volume. Batch sorption experiments showed that Cd(II) sorption onto HMBs were well-described by a pseudo-second-order model and Sips (Freundlich-Langmuir) model, indicating that HMBs removed Cd(II) mainly through chemical adsorption. MINTEQ modeling evidenced that HMBs adsorbed Cd(II) mainly through precipitation rather than surface complexation. The adsorption behavior of HMB700 to Cd(II) could be explained by surface complexation (-OCd, -COOCd), precipitation (Cd(OH)2 and CdCO3), physical adsorption (rich pore structure) and ion exchange (K+, Ca2+, Mg2+). Furthermore, adding HMBs (1 wt%) (incubation 60 days) could also significantly increase soil pH and electrical conductivity (EC), and significantly reduce the available Cd content in soil (47.97%-61.38%). Adding HMBs could promote the conversion of bioavailable to less bioavailable Cd forms. These results provided a new idea for fabricating agricultural waste-based HMBs to remediate Cd in water and soil.


Subject(s)
Cadmium , Soil Pollutants , Adsorption , Cadmium/analysis , Charcoal , Magnetic Phenomena , Porosity , Soil , Soil Pollutants/analysis , Water
10.
J Colloid Interface Sci ; 582(Pt B): 598-609, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-32911408

ABSTRACT

A convenient and efficient method to fabricate isolated Fe single-atom catalysts deposited on Myriophyllum aquaticum-based biochar (ISA-Fe/MC) is reported for peroxymonosulfate-based organics degradation. Firstly, the Fe nanoparticles anchored on the hierarchical porous biochar (nano-Fe/MC) can be obtained by utilizing K2FeO4 as a synchronous activation and graphitization agent. Subsequently, ISA-Fe/MC was achieved by HCl etching of nano-Fe/MC to remove the excess Fe nanoparticles. Compared with nano-Fe/MC, ISA-Fe/MC demonstrated outperformed catalytic capacity towards PMS activation for phenol degradation. The combination of super high surface area, hierarchical porous structure, graphitization structure and atomically dispersed Fe species should be responsible for prominent catalytic oxidation ability and outstanding resistance to common anions and humic acid. Based on the chemical scavengers, EPR experiments and electrochemistry tests, the SO4•- dominated radical degradation pathway for nano-Fe/MC and electron transfer reigned non-radical degradation pathway for ISA-Fe/MC was revealed. In contrast to nano-Fe/MC, density functional theory calculations demonstrated the enhanced density of states around Fermi level in ISA-Fe/MC meaning the increased catalytic performance and more electron transfer between single-atom Fe to adjacent graphitic C and N which could serve as electron transfer channel for PMS activation.

11.
J Hazard Mater ; 404(Pt A): 124145, 2021 02 15.
Article in English | MEDLINE | ID: mdl-33032089

ABSTRACT

Three magnetic biochar nanocomposites named as C800-1, C800-2 and C800-3 with increased iron deposition amount, decreased graphitized degree and gradually destroyed graphitized carbon layers, respectively, were prepared using potassium ferrate as activator and corn straw as biomass. C800-1, C800-2 and C800-3 exhibited much different bisphenol A degradation effect in presence of peroxymonosulfate among which C800-3 owned the best catalytic performance. For the degradation mechanism, the dominant role of electron transfer pathway was gradually replaced by the SO4•- pathway with the increase of iron amount and the destruction of graphitized carbon layers. This work would provide a simple and feasible method, namely changing the ratio of potassium ferrate and biochar, to manipulate the radical and nonradical degradation pathway in PMS-based organic wastewater purification.

12.
Bioorg Med Chem Lett ; 21(13): 4005-7, 2011 Jul 01.
Article in English | MEDLINE | ID: mdl-21612927

ABSTRACT

Two new quinazolinones alkaloids, R(+)-2-(heptan-3-yl)quinazolin-4(3H)-one (1) and (2R,3'R)+(2S,3'R)-2-(heptan-3-yl)-2,3-dihydroquinazolin-4(1H)-one (2) (a pair of epimers), as well as seven known analogues, 2-methylquinazolin-4(3H)-one (3), 2-benzylquinazolin-4(3H)-one (4), cyclo-(Pro-Ile), cyclo-(Pro-Leu), cyclo-(Pro-Val), cyclo-(Pro-Phe), and cyclo-(Tyr-Pro) were isolated from the n-butyl alcohol extract of the marine-derived bacterium Bacillus cereus 041381. The new compounds were identified by spectroscopic analysis and chemical synthesis. Four optical isomers 5-8 were also synthesized. Compounds 1-8 all showed moderate antifungal activity against Candida albicans with MIC values of 1.3-15.6 µM. Compound 5 exhibits the most powerful antifungal activity, which may reveal that S-configuration and 2,3-double bond were necessary for antifungal activity, and the racemization at C-2 and C-3' reduced the antifungal activity.


Subject(s)
Antifungal Agents/isolation & purification , Bacillus cereus/isolation & purification , Candida albicans/drug effects , Quinazolinones/isolation & purification , Quinazolinones/pharmacology , Antifungal Agents/chemical synthesis , Antifungal Agents/pharmacology , Aquatic Organisms , Bacillus cereus/chemistry , Magnetic Resonance Spectroscopy , Microbial Sensitivity Tests , Molecular Structure , Quinazolinones/chemical synthesis
13.
Article in Chinese | MEDLINE | ID: mdl-20387484

ABSTRACT

OBJECTIVE: To investigated the relationship between the serum levels of Th1/Th2 cytokines and the progress of viral hepatitis C and the outcome of interferon therapy. METHODS: Serum cytokine detection used the method of ELISA. HCV genotype were classified by direct sequencing. HCV RNA loads were determined by fluorescence quantitative PCR. RESULTS: The levels of IL-2 and TGF-beta in serum of patients with chronic hepatitis C were lower hut IL-5 was higher than those of normal control. The level of IL-6 was positively related to the sera level of ALT and was negatively related to sera HCV RNA load. Patients of HCV genotype 1 had higher sera quantities of IL-6 than those of genotype 2 and patients of genotype 2a had lower sera quantities of IL-2 than those of 2b. The levels of IL-2 had the tendency to decrease whereas IL-6 had the tendency to increase when time went on. The level of TGF-beta increased at early phase but decrease later. There were no difference of all cytokines detected between the groups of response and nonresponse before interferon therapy, hut the quantity of serum IFN-gamma were increased after interferon therapy in the response group. CONCLUSION: The tested cytokines co-participate in the pathogenesis of chronic hepatitis C and have the relationship with the clinical manifestations of the patients. There were no correlation between the levels of Th1/Th2 cytokines in the serum before IFN treatment and the result of IFN therapy. Increasing IFN-gamma in the serum induced by IFN treatment is associated with sustained virological response.


Subject(s)
Cytokines/blood , Hepatitis C, Chronic/drug therapy , Hepatitis C, Chronic/immunology , Interferons/administration & dosage , Th1 Cells/immunology , Th2 Cells/immunology , Adult , Aged , Cytokines/immunology , Female , Hepacivirus/genetics , Hepacivirus/immunology , Hepacivirus/isolation & purification , Hepatitis C, Chronic/blood , Humans , Male , Middle Aged , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL