Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 6(16): 13438-47, 2014 Aug 27.
Article in English | MEDLINE | ID: mdl-25084054

ABSTRACT

Waste cornstalks and pomelo skins are used as carbon resources for preparing nanocomposites of iron oxide and partly graphitized carbon (Fe3O4/PGC-CS and Fe3O4/PGC-PS). The results showed that Fe3O4 with a face-centered cubic structure is uniformly dispersed on the skeleton of Fe3O4/GC, and the highest SBET values of Fe3O4/PGC-CS (476.5 m(2) g(-1)) and Fe3O4/PGC-PS (547.7 m(2) g(-1)) are obtained at 1000 °C. The electrical conductivity and density of catalytic active sites are correspondingly improved by the introduction of Fe species. Microbial fuel cells (MFCs) with a mixed composite (Fe3O4/PGC-CS:Fe3O4/PGC-PS = 1:1) cathode (three-dimensional structures) generate the highest power density of 1502 ± 30 mW m(-2), which is 26.01% higher than that of Pt/C (1192 ± 33 mW m(-2)) and only declines by 7.12% after 18 cycles. The Fe3O4/PGC-CS cathode has the highest Coulombic efficiency (24.3 ± 0.7%). The Fe3O4/PGC composites exhibit high oxygen reduction reactivity, low charge transfer resistances, and long-term stability and can be used as a low-cost and high-efficiency catalyst for MFCs.


Subject(s)
Bioelectric Energy Sources/economics , Ferric Compounds/chemical synthesis , Graphite/chemical synthesis , Calorimetry, Differential Scanning , Catalysis , Cost-Benefit Analysis , Crystallization , Electric Impedance , Electrodes , Nanocomposites/chemistry , Nanocomposites/ultrastructure , Spectrum Analysis, Raman , Thermogravimetry , X-Ray Diffraction
2.
J Colloid Interface Sci ; 426: 1-8, 2014 Jul 15.
Article in English | MEDLINE | ID: mdl-24863758

ABSTRACT

The removal of dyes in wastewater has been of much interest in the recent decades because dyes are stable, toxic and even potentially carcinogenic, and their release into environment causes serious environmental, aesthetical, and health problems. In the current work, indium-based coordination polymer particles (In-CPPs) have been fabricated via a facile solvothermal synthesis without any template or surfactant. In-CPPs are composed of hierarchical nanostructures assembled from abundant nanoplates with thickness of about 20 nm. Owing to their high BET surface area and pore volume, In-CPPs exhibit excellent adsorption capability for Congo red with a maximum capacity of 577 mg g(-1), which was higher than that of most materials reported to now. In-CPPS can also be outstanding adsorbents for removing other dyes such as acid chrome blue K, brilliant red GR and brilliant green. Furthermore, after calcinations in air In-CPPs can be converted to morphology-preserved porous In2O3 products which can detect NOx gas in air at room temperature.


Subject(s)
Indium/chemistry , Nanostructures , Polymers/chemical synthesis , Water Purification/methods , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Polymers/chemistry , X-Ray Diffraction
3.
J Mol Model ; 18(5): 2043-54, 2012 May.
Article in English | MEDLINE | ID: mdl-21881853

ABSTRACT

Exploring and evaluating the potential applications of two-dimensional graphene is an increasingly hot topic in graphene research. In this paper, by studying the adsorption of NO, N(2)O, and NO(2) on pristine and silicon (Si)-doped graphene with density functional theory methods, we evaluated the possibility of using Si-doped graphene as a candidate to detect or reduce harmful nitrogen oxides. The results indicate that, while adsorption of the three molecules on pristine graphene is very weak, Si-doping enhances the interaction of these molecules with graphene sheet in various ways: (1) two NO molecules can be adsorbed on Si-doped graphene in a paired arrangement, while up to four NO(2) molecules attach to the doped graphene with an average adsorption energy of -0.329 eV; (2) the N(2)O molecule can be reduced easily to the N(2) molecule, leaving an O-atom on the Si-doped graphene. Moreover, we find that adsorption of NO and NO(2) leads to large changes in the electronic properties of Si-doped graphene. On the basis of these results, Si-doped graphene can be expected to be a good sensor for NO and NO(2) detection, as well as a metal-free catalyst for N(2)O reduction.


Subject(s)
Electrons , Graphite/chemistry , Nitric Oxide/analysis , Nitrogen Dioxide/analysis , Silicon/chemistry , Adsorption , Catalysis , Electrochemical Techniques , Models, Chemical , Nitric Oxide/chemistry , Nitrogen Dioxide/chemistry , Oxidation-Reduction , Quantum Theory , Static Electricity , Surface Properties , Thermodynamics
4.
Phys Chem Chem Phys ; 13(32): 14481-9, 2011 Aug 28.
Article in English | MEDLINE | ID: mdl-21735037

ABSTRACT

Scalar relativistic density functional theory (DFT) has been used to explore the spectroscopic and redox properties of Ruthenium-type photovoltaic sensitizers, trans-[Ru((R)L)(NCS)(2)] ((R)L = 4,4'''-di-R-4',4''-bis(carboxylic acid)-2,2' : 6',2'' : 6'',2'''-quaterpyridine, R = H (1), Me (2), (t)Bu (3) and COOH (4); (R)L = 4,4'''-di-R-4',4''-bis(carboxylic acid)-cycloquaterpyridine, R = COOH (5)). The geometries of the molecular ground, univalent cationic and triplet excited states of 1-5 were optimized. In complexes 1-4, the quaterpyridine ligand retains its planarity in the molecular, cationic and excited states, although the C≡N-Ru angle representing the SCN → Ru coordination approaches 180° in the univalent cationic and triplet excited states. The theoretically designed complex 5 displays a curved cycloquaterpyridine ligand with significantly distorted SCN → Ru coordination. The electron spin density distributions reveal that one electron is removed from the Ru/NCS moieties upon oxidation and the triplet excited state is due to the Ru/NCS → polypyridine charge transfer (MLCT/L'LCT). The experimental absorption spectra were well reproduced by the time-dependent DFT calculations. In the visible region, two MLCT/L'LCT absorption bands were calculated to be at 652 and 506 nm for 3, agreeing with experimental values of 637 and 515 nm, respectively. The replacement of the R- group with -COOH stabilizes the lower-energy unoccupied orbitals of π* character in the quaterpyridine ligand in 4. This results in a large red shift for these two MLCT/L'LCT bands. In contrast, the lower-energy MLCT/L'LCT peak of 5 nearly disappears due to the introduction of cycloquaterpyridine ligand. The higher energy bands in 5 however become broader and more intense. As far as absorption in the visible region is concerned, the theoretically designed 5 may be a very promising sensitizer for DSSC. In addition, the redox potentials of 1-5 were calculated and discussed, in conjunction with photosensitizers such as cis-[Ru(L(1))(2)(X)(2)] (L(1) = 4,4'-bis(carboxylic acid)-2,2'-bipyridine; X = NCS(-) (6), Cl(-) (7) and CN(-) (8)), cis-[Ru(L(1)')(2)(NCS)(2)] (L(1)' = 4,7-bis(carboxylic acid)-1,10-phenanthroline, 9), [NH(4)][Ru(L(2))(NCS)(3)] (L(2) = 4,4',4''-tris(carboxylic acid)-2,2' : 6',2''-terpyridine, 10) and [Ru(L(2))(NCS)(3)](-) (11).


Subject(s)
Electric Power Supplies , Photosensitizing Agents/chemistry , Ruthenium/chemistry , Solar Energy , Molecular Structure , Oxidation-Reduction , Quantum Theory , Spectrophotometry, Ultraviolet
5.
Inorg Chem ; 48(7): 2844-54, 2009 Apr 06.
Article in English | MEDLINE | ID: mdl-19281182

ABSTRACT

To understand their photocatalytic activity and application in luminescent materials, a series of gold and rhodium phosphine complexes (mononuclear [Au(I)(PH(3))(2)](+) (1) and [Rh(I)(CNH)(2)(PH(3))(2)](+) (2); homobinuclear [Au(I)(2)(PH(2)CH(2)PH(2))(2)](2+) (3) and [Rh(I)(2)(CNH)(4)(PH(2)CH(2)PH(2))(2)](2+) (4); heterobinuclear [Au(I)Rh(I)(CNH)(2)(PH(2)CH(2)PH(2))(2)](2+) (5), [Au(I)Rh(I)(CNH)(2)(PH(2)NHPH(2))(2)Cl(2)] (6), and [Au(I)Rh(I)(CNH)(2)(PH(2)NHPH(2))(2)](2+) (7); and oxidized derivatives [Au(II)Rh(II)(CNH)(2)(PH(2)CH(2)PH(2))(2)](4+) (8), [Au(II)Rh(II)(CNH)(2)(PH(2)NHPH(2))(2)Cl(3)](+) (9), and [Au(II)Rh(II)(CNH)(2)(PH(2)NHPH(2))(2)](4+) (10)) were investigated using ab initio methods and density functional theory. With the use of the MP2 method, the M-M' distances in 3-7 were estimated to be in the range of 2.76-3.02 A, implying the existence of weak metal-metal interaction. This is further evident in the stretching frequencies and bond orders of M-M'. The two-electron oxidation from 5-7 to their respective partners 8-10 was shown to mainly occur in the gold-rhodium centers. Experimental absorption spectra were well reproduced by our time-dependent density functional theory calculations. The metal-metal interaction results in a large shift of d(z(2)) --> p(z) transition absorptions in binuclear complexes relative to mononuclear analogues and concomitantly produces a low-lying excited state that is responsible for increasing visible-light photocatalytic activities. Upon excitation, the metal-centered transition and the metal-to-metal charge transfer strengthen the metal-metal interaction in triplet excited states for 3-6, while the promotion of electrons into the sigma*(d(z(2))) orbital weakens the interaction in 9.


Subject(s)
Computer Simulation , Gold/chemistry , Models, Chemical , Organometallic Compounds/chemistry , Phosphines/chemistry , Rhodium/chemistry , Circular Dichroism , Dimerization , Ligands , Organometallic Compounds/chemical synthesis , Quantum Theory
6.
J Comput Chem ; 30(12): 1785-98, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19090567

ABSTRACT

The structural and electronic properties of five terminations of cubic lead titanate (PbTiO3) (110) polar surface were investigated by first-principles total-energy calculations using a periodic slab model. On the PbTiO termination, an anomalous filling of conduction band was observed, whereas on the O2 termination, two surface oxygen atoms formed a peroxo group, demonstrating that the electronic structures of the two stoichiometric terminations undergo significant changes with respect to bulk materials. However, for the three nonstoichiometric TiO-, Pb-, and O-terminated surfaces, their electronic structures are very similar to bulk. Charge redistribution results for the five terminations confirmed that electronic structure and surface composition changes are responsible for their polarity compensation. However, which mechanism actually dominates the stabilization process depends upon energetic considerations. A thermodynamic stability diagram suggested that the two stoichiometric terminations are unstable; however, the three nonstoichiometric terminations can be stabilized in some given regions. Furthermore, this study indicates that the very different stabilities and surface states filling behaviors of the PbTiO3 (110) polar surface with respect to SrTiO3 and BaTiO3 ones seem to originate from the partially covalent characteristics of Pb-O pairs.

7.
Inorg Chem ; 47(7): 2312-24, 2008 Apr 07.
Article in English | MEDLINE | ID: mdl-18311890

ABSTRACT

A series of ruthenium(II) complexes, [Ru(tcterpy)(NCS)3](4-) (0H), [Ru(Htcterpy)(NCS)3](3-) (1H), [Ru(H2tcterpy)(NCS)3](2-) (2H), and [Ru(H3tcterpy)(NCS)3](-) (3H) (tcterpy = 4,4',4''-tricarboxy-2,2':6',2''-terpyridine), are investigated theoretically to explore their electronic structures and spectroscopic properties. The geometry structures of the complexes in the ground and excited states are optimized by the density functional theory and single-excitation configuration interaction methods, respectively. The absorption and emission spectra of the complexes in gas phase and solutions (ethanol and water) are predicted at the TDDFT(B3LYP) level. The calculations indicate that the protonation effect slightly affects the geometry structures of the complexes in the ground and excited states but leads to significant change in the electronic structures. In cases of both absorptions and emissions, the energy levels of HOMOs and LUMOs for 0H-3H decrease dramatically as a result of the introduction of the COOH groups. The protonation much stabilizes the unoccupied orbitals with respect to the occupied orbitals. Thus, both the absorptions and emissions are red-shifted from 0H to 3H. The phosphorescence of 0H-3H are attributed to tcterpyridine --> d(Ru)/NCS ((3)MLCT/(3)LLCT) transitions. The solvent media can influence the molecular orbital distribution of the complexes; as a consequence, the spectra calculated in the presence of the solvent are in good agreement with the experimental results. The MLCT/LLCT absorptions of 0H in ethanol and water are red-shifted relative to that in the gas phase. However, the MLCT/LLCT absorptions of the protonated complexes (1H-3H) are blue-shifted in ethanol and water with respect to the gas phase. Similarly, the solvent effect causes a blue-shift of the phosphorescent emission for 0H-3H.

8.
J Comput Chem ; 28(15): 2472-82, 2007 Nov 30.
Article in English | MEDLINE | ID: mdl-17722027

ABSTRACT

A theoretical study on the protonation system of [N,C,C,S], [H,N,C,C,S]+, was performed at the B3LYP/6-311++G(d,p) and CCSD(T)/6-311++G(2df,2p) (single point) levels of theory. On the doublet [H,N,C,C,S]+ surface, 24 species were located as energy minima and 10 of them were considered as kinetically stable species. The species HNCCS+ with 2A' state and a shallow W-shaped skeleton was predicted to be the global minimum and kinetically the most stable species, being in good agreement with previous experimental findings. Furthermore, the protonation reactions of the stable [N,C,C,S] isomers were investigated in detail. The calculation results indicated that the [N,C,C,S] isomers may be significantly stabilized upon protonation. Finally, the possible covalent structures of the [H,N,C,C,S]+ isomers with considerable stability were briefly discussed.

9.
J Comput Chem ; 28(7): 1221-33, 2007 May.
Article in English | MEDLINE | ID: mdl-17299769

ABSTRACT

The possible reaction product distribution and mechanism of carbon monophosphide CP with unsaturated hydrocarbons allene CH(2)CCH(2) and methylacetylene CH(3)CCH are investigated at the B3LYP/6-311+G(d,p), QCISD(T)/6-311++G(2df,2p), and G2 levels of theory. Corresponding reactants, products, intermediates, and interconversion and dissociation transition states are located on the reaction potential energy profiles. Computation results show that in the reaction of CP with CH(2)CCH(2) the dominant reaction product should be species CH(2)CCHCP. Also, we can suggest species HCCCH(2)CP as a secondary reaction product despite of only minor contribution to reaction products. In the reaction of CP with CH(3)CCH, the primary and secondary products are suggested to be two important molecules HCCCP and CH(3)CCCP, respectively. The predicted mechanisms for the two reactions are not in parallel with the reactions of CN with allene CH(2)CCH(2) and methylacetylene CH(3)CCH given in previous studies. The present calculations provide some useful information for future possible experimental isolation and observation for some interesting unsaturated carbon-phosphorus-bearing species.

10.
J Phys Chem A ; 111(2): 287-94, 2007 Jan 18.
Article in English | MEDLINE | ID: mdl-17214466

ABSTRACT

The structures of trans-[M(2)(CN)(4)(PH(2)CH(2)PH(2))(2)] (M = Pt (1), Pd (2), and Ni (3)), trans-[Pt(2)X(4)(PH(2)CH(2)PH(2))(2)] (X = Cl (4) and Br (5)), and trans-[M(CN)(2)(PH(3))(2)] (M = Pt (6), Pd (7), and Ni (8)) in the ground state were optimized using the MP2 method. Frequency calculations reveal that the weak metal-metal interaction is essentially attractive for 1, 2, 4, and 5 but not for 3. The TD-DFT calculations associated with the polarized continuum model (PCM) were performed to predict absorption spectra in CH(2)Cl(2) solution. Experimental spectra are well reproduced by our results. With respect to analogous mononuclear d(8) complexes (6-8), a large red shift of the absorption wavelength was calculated for the binuclear d(8) complexes (1-3). Relative to 1 with unsaturated CN- donors, introduction of saturated halogen donors into 4 and 5 changes their electronic structures, especially the HOMO and LUMO. The TD-DFT and subsequent unrestricted MP2 calculations predict that 1 produces the lowest-energy d --> p emission while 2-5 favor the d --> d emissions, agreeing with experimental observations.

11.
Inorg Chem ; 45(21): 8729-35, 2006 Oct 16.
Article in English | MEDLINE | ID: mdl-17029384

ABSTRACT

The structures of [Pt2(pop)4]4-, [Pt2(pcp)4]4-, and related species [Pt2(pop)4X2]4- and [Pt2(pop)4]2- in the ground states (pop = P2O5H2(2-), pcp = P2O4CH4(2-), and X = I, Br, and Cl) were optimized using the second-order Møller-Plesset perturbation (MP2) method. It is shown that the Pt-Pt distances decrease in going from [Pt2(pop)4]4- to [Pt2(pop)4X2]4- to [Pt2(pop)4]2-. This is supported by the analyses of their electronic structures. The calculated aqueous absorption spectra at the time-dependent density functional theory (TD-DFT) level agree with experimental observations. The unrestricted MP2 method was employed to optimize the structures of [Pt2(pop)4]4- and [Pt2(pcp)4]4- in the lowest-energy triplet excited states. The Pt-Pt contraction trend is well reproduced in these calculations. For [Pt2(pop)4]4-, the Pt-Pt distance decreases from 2.905 A in the ground state to 2.747 A in the excited state, which is comparable to experimental values of 2.91-2.92 A and 2.64-2.71 A, respectively. On the basis of the excited-state structures of such complexes, TD-DFT predicts the solution emissions at 480 and 496 nm, which is closer to the experimental values of 512 and 510 nm emissions, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL
...