Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 49(5): 655-666, 2024 May 28.
Article in English, Chinese | MEDLINE | ID: mdl-39174879

ABSTRACT

OBJECTIVES: Progressive bone resorption and destruction is one of the most critical clinical features of middle ear cholesteatoma, potentially leading to various intracranial and extracranial complications. However, the mechanisms underlying bone destruction in middle ear cholesteatoma remain unclear. This study aims to explore the role of parathyroid hormone-related protein (PTHrP) in bone destruction associated with middle ear cholesteatoma. METHODS: A total of 25 cholesteatoma specimens and 13 normal external auditory canal skin specimens were collected from patients with acquired middle ear cholesteatoma. Immunohistochemical staining was used to detect the expressions of PTHrP, receptor activator for nuclear factor-kappa B ligand (RANKL), and osteoprotegerin (OPG) in cholesteatoma and normal tissues. Tartrate-resistant acid phosphatase (TRAP) staining was used to detect the presence of TRAP positive multi-nucleated macrophages in cholesteatoma and normal tissues. Mono-nuclear macrophage RAW264.7 cells were subjected to interventions, divided into a RANKL intervention group and a PTHrP+ RANKL co-intervention group. TRAP staining was used to detect osteoclast formation in the 2 groups. The mRNA expression levels of osteoclast-related genes, including TRAP, cathepsin K (CTSK), and nuclear factor of activated T cell cytoplasmic 1 (NFATc1), were measured using real-time polymerase chain reaction (real-time PCR) after the interventions. Bone resorption function of osteoclasts was assessed using a bone resorption pit analysis. RESULTS: Immunohistochemical staining showed significantly increased expression of PTHrP and RANKL and decreased expression of OPG in cholesteatoma tissues (all P<0.05). PTHrP expression was significantly positively correlated with RANKL, the RANKL/OPG ratio, and negatively correlated with OPG expression (r=0.385, r=0.417, r=-0.316, all P<0.05). Additionally, the expression levels of PTHrP and RANKL were significantly positively correlated with the degree of bone destruction in cholesteatoma (r=0.413, r=0.505, both P<0.05). TRAP staining revealed a large number of TRAP-positive cells, including multi-nucleated osteoclasts with three or more nuclei, in the stroma surrounding the cholesteatoma epithelium. After 5 days of RANKL or PTHrP+RANKL co-intervention, the number of osteoclasts was significantly greater in the PTHrP+RANKL co-intervention group than that in the RANKL group (P<0.05), with increased mRNA expression levels of TRAP, CTSK, and NFATc1 (all P<0.05). Scanning electron microscopy of bone resorption pits showed that the number (P<0.05) and size of bone resorption pits on bone slices were significantly greater in the PTHrP+RANKL co-intervention group compared with the RANKL group. CONCLUSIONS: PTHrP may promote the differentiation of macrophages in the surrounding stroma of cholesteatoma into osteoclasts through RANKL induction, contributing to bone destruction in middle ear cholesteatoma.


Subject(s)
Bone Resorption , Cell Differentiation , Cholesteatoma, Middle Ear , Macrophages , Osteoclasts , Osteoprotegerin , Parathyroid Hormone-Related Protein , RANK Ligand , Animals , Humans , Male , Mice , Bone Resorption/metabolism , Cholesteatoma, Middle Ear/metabolism , Cholesteatoma, Middle Ear/pathology , Macrophages/metabolism , NFATC Transcription Factors/metabolism , NFATC Transcription Factors/genetics , Osteoclasts/metabolism , Osteoprotegerin/metabolism , Parathyroid Hormone-Related Protein/metabolism , RANK Ligand/metabolism , RANK Ligand/genetics , RAW 264.7 Cells
2.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 49(5): 667-678, 2024 May 28.
Article in English, Chinese | MEDLINE | ID: mdl-39174880

ABSTRACT

OBJECTIVES: Middle ear cholesteatoma is a non-tumorous condition that typically leads to hearing loss, bone destruction, and other severe complications. Despite surgery being the primary treatment, the recurrence rate remains high. Therefore, exploring the molecular mechanisms underlying cholesteatoma is crucial for discovering new therapeutic approaches. This study aims to explore the involvement of N6-methyladenosine (m6A) methylation in long non-coding RNAs (lncRNAs) in the biological functions and related pathways of middle ear cholesteatoma. METHODS: The m6A modification patterns of lncRNA in middle ear cholesteatoma tissues (n=5) and normal post-auricular skin tissues (n=5) were analyzed using an lncRNA m6A transcriptome microarray. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were conducted to identify potential biological functions and signaling pathways involved in the pathogenesis of middle ear cholesteatoma. Methylated RNA immunoprecipitation (MeRIP)-PCR was used to validate the m6A modifications in cholesteatoma and normal skin tissues. RESULTS: Compared with normal skin tissues, 1 525 lncRNAs were differentially methylated in middle ear cholesteatoma tissues, with 1 048 showing hypermethylation and 477 showing hypomethylation [fold change (FC)≥3 or <1/3, P<0.05]. GO enrichment analysis indicated that hypermethylated lncRNAs were involved in protein phosphatase inhibitor activity, neuron-neuron synapse, and regulation of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor activity. Hypomethylated lncRNAs were associated with mRNA methyltransferase activity, secretory granule membrane, and mRNA methylation. KEGG analysis revealed that hypermethylated lncRNAs were mainly associated with 5 pathways: the Hedgehog signaling pathway, viral protein interaction with cytokines and cytokine receptors, mitogen-activated protein kinase (MAPK) signaling pathway, cytokine-cytokine receptor interaction, and adrenergic signaling in cardiomyocytes. Hypomethylated lncRNAs were mainly involved in 4 pathways: Renal cell carcinoma, tumor necrosis factor signaling pathway, transcriptional misregulation in cancer, and cytokine-cytokine receptor interaction. Additionally, MeRIP-PCR confirmed the changes in m6A methylation levels in NR_033339, NR_122111, NR_130744, and NR_026800, consistent with microarray analysis. Real-time PCR also confirmed the significant upregulation of MAPK1 and NF-κB, key genes in the MAPK signaling pathway. CONCLUSIONS: This study reveals the m6A modification patterns of lncRNAs in middle ear cholesteatoma, suggests a direction for further research into the role of lncRNA m6A modification in the etiology of cholesteatoma. The findings provide potential therapeutic targets for the treatment of middle ear cholesteatoma.


Subject(s)
Adenosine , Cholesteatoma, Middle Ear , RNA, Long Noncoding , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Humans , Adenosine/analogs & derivatives , Adenosine/metabolism , Adenosine/genetics , Cholesteatoma, Middle Ear/genetics , Cholesteatoma, Middle Ear/metabolism , Methylation , Signal Transduction , Gene Ontology , Gene Expression Profiling , Transcriptome
3.
Environ Pollut ; 361: 124839, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39209051

ABSTRACT

Parabens, bisphenols (BPs), and triclosan (TCS) are common environmental phenols widely applied in industrial products, pharmaceuticals, and personal care products. They are endocrine disruptors and pervade the natural environment, causing significant detrimental impacts on ecosystems, including marine habitats. Therefore, in this study, 40 samples comprising coral polyps, algae, and sediments were collected from Sanya, Hainan Province, China, in which the presence and compositional profiles of parabens, BPs, and TCS were examined to identify their fate in the oceans. The results unveiled the ubiquitous occurrence of at least one paraben or bisphenol in all samples, with TCS detected in over 80% of cases. Notably, coral samples contained the most contaminants (median concentration: 9.42 ng/g dry weight-dw), followed by sediment samples (5.95 ng/g dw) and algal samples (3.58 ng/g dw). Attributed to their broadest application, methylparaben (MeP) and propylparaben (PrP) emerged as the primary paraben constituents. MeP displayed the highest median concentration in coral samples (4.42 ng/g dw), probably related to its high-water solubility and the filtration mechanism employed by the coral polyps during seawater intake. Intriguingly, bisphenol P (BPP) superseded bisphenol A (BPA) as the dominant bisphenol, especially in the algal samples, probably owing to the lipophilic character of BPP and the enhanced biodegradability of BPA within aquatic environments. The highest concentration of TCS (3.44 ng/g dw) was found in the sediment samples, associated with its long half-life in the sediments. Furthermore, the correlation between multiple parabens and TCS implies their co-use to augment antimicrobial efficacy. Future research should prioritize the examination of these phenols in diverse marine environmental media. Corresponding toxicological experiments should be conducted to visualize their transport dynamics, degradation byproducts, and toxicity to marine biota to gain insights into the risks they pose to the marine ecosystem.

4.
Sci Total Environ ; 951: 175818, 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39197761

ABSTRACT

The prevalence of trace elements from industrial and traffic activities poses potential health risks through inhalation exposure. Prior studies have focused on trace elements in water, food, and dust, and less attention has been paid to their occurrence in fine particulate matter (PM2.5). In this study, 1424 air samples were collected from three districts (Nanshan, Longgang, and Yantian) in Shenzhen from 2016 to 2021, and we analyzed the concentrations, temporal trends, and spatial distributions of PM2.5 and associated trace elements. Both PM2.5 and trace elements exhibited decreasing trends and similar seasonal variations, with high levels in cold seasons and low levels in warm seasons. In terms of spatial distributions, the concentrations of PM2.5 and trace elements in Nanshan and Longgang were significantly higher than those in Yantian, likely due to the industrial structure and traffic activities. It is worth noting that PM2.5 was identified as a potential mediator of the effect of meteorological parameters on trace element levels. Besides, the values of estimated daily intake (EDI) and uptake (EDU) suggested that infants and young children experienced an elevated risk of exposure to trace elements. While the annual average excess hazard indexes (R) were below the safety threshold (10-6), carcinogenic trace elements like arsenic (As) and chromium (Cr) posed a greater potential threat to human health compared to non-carcinogenic trace elements.

5.
Front Neurol ; 15: 1378017, 2024.
Article in English | MEDLINE | ID: mdl-38978810

ABSTRACT

This study investigated the etiology, clinical features, and prognosis of patients diagnosed with bilateral sudden sensorineural hearing loss (BSSNHL). The clinical data of 100 patients with bilateral sudden hearing loss as a chief complaint treated at Xiangya Second Hospital of Central South University between January 2010 and August 2022, including clinical characteristics, audiometric data, and prognosis, were retrospectively analyzed. These 100 cases accounted for 8.09% (100/1235) of all patients admitted for sudden sensorineural hearing loss (SSNHL) during the same period. Of these, 71 were simultaneous cases and 29 were sequential cases of BSSNHL. Among the 200 ears analyzed in this study, 13, 36, 57, and 94 had mild, moderate, severe, and profound sensorineural hearing loss, respectively. The overall effective rate after comprehensive treatment was 32%, with significant differences in efficacy and prognosis among different degrees of hearing loss (p < 0.05). Comorbidities of hypertension (24 cases), diabetes (14 cases), and coronary heart disease (9 cases) significantly impacted therapeutic efficacy and prognosis in patients with BSSNHL (p < 0.05). Compared to unilateral SSNHL, BSSNHL exhibits distinctive characteristics.

6.
Front Genet ; 15: 1396720, 2024.
Article in English | MEDLINE | ID: mdl-38978876

ABSTRACT

Introduction: Middle ear cholesteatoma is a chronic middle ear disease characterized by severe hearing loss and adjacent bone erosion, resulting in numerous complications. This study sought to identify pathways involved in N6-methyladenosine (m6A) modification of circRNA in middle ear cholesteatoma. Methods: A m6A circRNA epitranscriptomic microarray analysis was performed in middle ear cholesteatoma tissues (n = 5) and normal post-auricular skin samples (n = 5). Bioinformatics analyses subsequently explored the biological functions (Gene Ontology, GO) and signaling pathways (Kyoto Encyclopedia of Genes and Genomes, KEGG) underlying middle ear cholesteatoma pathogenesis. Methylated RNA immunoprecipitation qPCR (MeRIP-qPCR) was performed to verify the presence of circRNAs with m6A modifications in middle ear cholesteatoma and normal skin samples. Results: Microarray analysis identified 3,755 circRNAs as significantly differentially modified by m6A methylation in middle ear cholesteatoma compared with the normal post-auricular skin. Among these, 3,742 were hypermethylated (FC ≥ 2, FDR < 0.05) and 13 were hypomethylated (FC ≤ 1/2, FDR < 0.05). GO analysis terms with the highest enrichment score were localization, cytoplasm, and ATP-dependent activity for biological processes, cellular components, and molecular functions respectively. Of the eight hypermethylated circRNA pathways, RNA degradation pathway has the highest enrichment score. Peroxisome Proliferator-Activated Receptor (PPAR) signaling pathway was hypomethylated. To validate the microarray analysis, we conducted MeRIP-qPCR to assess the methylation levels of five specific m6A-modified circRNAs: hsa_circRNA_061554, hsa_circRNA_001454, hsa_circRNA_031526, hsa_circRNA_100833, and hsa_circRNA_022382. The validation was highly consistent with the findings from the microarray analysis. Conclusion: Our study firstly presents m6A modification patterns of circRNAs in middle ear cholesteatoma. This finding suggests a direction for circRNA m6A modification research in the etiology of cholesteatoma and provides potential therapeutic targets for the treatment of middle ear cholesteatoma.

7.
Environ Sci Technol ; 58(31): 13687-13696, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39067068

ABSTRACT

Bisphenols, parabens, and triclosan (TCS) are common endocrine disrupters used in various consumer products. These chemicals have been shown to cross the placental barrier and affect intrauterine development of fetuses. In this study, we quantified serum levels of six bisphenols, five parabens, and TCS in 483 pregnant women from southern China. Quantile-based g-computation showed that combined exposure to bisphenols, parabens, and TCS was significantly (p < 0.05) and negatively associated with birth weight (ß = -39.9, 95% CI: -73.8, -6.1), birth length (ß = -0.19, 95% CI: -0.34, -0.04), head circumference (ß = -0.13, 95% CI: -0.24, -0.02), and thoracic circumference (ß = -0.16, 95% CI: -0.29, -0.04). An inverse correlation was also identified between mixture exposure and gestational age (ß = -0.12, 95% CI: -0.24, -0.01). Bisphenol A (BPA), bisphenol Z (BPZ), bisphenol AP (BPAP), propylparaben (PrP), and TCS served as the dominant contributors to the overall effect. In subgroup analyses, male newborns were more susceptible to mixture exposure than females, whereas the exposure-outcome link was prominent among pregnant women in the first and second trimesters. More evidence is warranted to elucidate the impacts of exposure to mixtures on birth outcomes, as well as the underlying mechanisms.


Subject(s)
Birth Weight , Gestational Age , Parabens , Phenols , Triclosan , Humans , Female , Pregnancy , Birth Weight/drug effects , Adult , Male , Infant, Newborn , Maternal Exposure , Endocrine Disruptors , Benzhydryl Compounds , China , Pregnancy Trimesters
8.
Environ Int ; 189: 108797, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38838486

ABSTRACT

Benzophenone (BP)-type UV filters are commonly added to sunscreens and cosmetics to protect against UV radiation for human skin and hair. As a result, BPs are ubiquitous in the environment and human body, and their endocrine-disrupting characteristics have been a hot topic of discussion. However, our knowledge regarding the detrimental effects of prenatal exposure to BPs on pregnant women and their offspring remains limited. To fill this gap, we determined five BP derivatives in 600 serum samples obtained from pregnant women. All the target analytes, except 2,4-dihydroxybenzophenone (BP-1), have achieved a 100 % detection rate. The most prevalent compound was 2-hydroxy-4-methoxybenzophenone (BP-3), with a median concentration of 0.545 ng/mL. Significant and positive correlations were observed among BP derivatives, indicating both endogenous metabolism and common external sources. Utilizing Bayesian kernel machine regression (BKMR) and quantile-based g-computation (QGC) models, we found relationships between BP exposure and reduced neonatal birth weight (BW) and birth chest circumference (BC) during the third trimester. Notably, the adverse effect of BPs on birth size was sex-specific. Moreover, triglyceride (TG) was identified as a potential mediator of the effect of BPs on blood pressure, and co-exposure to BPs was linked to disruptions in thyroid hormone levels and glucose regulation. Further research is warranted to unravel the toxicity of BPs and their detrimental effects on pregnant women and fetuses.


Subject(s)
Benzophenones , Maternal Exposure , Sunscreening Agents , Humans , Female , Pregnancy , China , Adult , Infant, Newborn , Maternal Health , Birth Weight/drug effects , Prenatal Exposure Delayed Effects , Male , Young Adult
9.
Environ Sci Pollut Res Int ; 30(47): 103788-103800, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37697187

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous contaminants in the atmosphere that have drawn intense attention due to their carcinogenicity and mutagenicity. In this work, 1424 air samples were collected between January 2016 and December 2021 in three areas of Shenzhen, China to determine the concentrations of PM2.5 and PAHs and their spatiotemporal variation. Human health risks due to the daily intake and uptake of PAHs and the resulting incremental lifetime cancer risk (ILCR) were also evaluated. PAHs were detected frequently in the samples at concentrations between 0.28 and 32.7 ng/m3 (median: 1.04 ng/m3). PM2.5 and PAH concentrations decreased from 2016 to 2021, and the Yantian area had lower median concentrations of PM2.5 (23.0 µg/m3) and PAHs (0.02 ng/m3) than the Longgang and Nanshan areas. The concentrations of PM2.5 and PAHs were significantly higher in winter than in summer. Analysis of diagnostic ratios indicated that petroleum combustion was the dominant source of airborne PAHs in Shenzhen. The estimated daily intake (EDI) and uptake (EDU) of PAHs by local residents decreased gradually with increasing age, indicating that infants are at particular risk of PAH exposure. However, the incremental lifetime cancer risks (ILCRs) were below the threshold value of 10-6, indicating that inhalation exposure to PAHs posed a negligible carcinogenic risk to Shenzhen residents. While promising, these results may underestimate actual PAH exposure levels, so further analysis of health risks due to PAHs in Shenzhen is needed.


Subject(s)
Air Pollutants , Neoplasms , Polycyclic Aromatic Hydrocarbons , Humans , Air Pollutants/analysis , Particulate Matter/analysis , Environmental Monitoring , Polycyclic Aromatic Hydrocarbons/analysis , Seasons , Risk Assessment , Neoplasms/chemically induced , Neoplasms/epidemiology , China
10.
Front Genet ; 14: 1188048, 2023.
Article in English | MEDLINE | ID: mdl-37609036

ABSTRACT

Introduction: Middle ear cholesteatoma is characterized by the hyperproliferation of keratinocytes. In recent decades, N6-methyladenosine (m6A) modification has been shown to play an essential role in the pathogenesis of many proliferative diseases. However, neither the m6A modification profile nor its potential role in the pathogenesis of middle ear cholesteatoma has currently been investigated. Therefore, this study aimed to explore m6A modification patterns in middle ear cholesteatoma. Materials and methods: An m6A mRNA epitranscriptomic microarray analysis was performed to analyze m6A modification patterns in middle ear cholesteatoma tissue (n = 5) and normal post-auricular skin samples (n = 5). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed to predict the potential biological functions and signaling pathways underlying the pathogenesis of middle ear cholesteatoma. Subsequently, m6A modification levels were verified by methylated RNA immunoprecipitation-qPCR (MeRIP-qPCR) in middle ear cholesteatoma tissue and normal skin samples, respectively. Results: A total of 6,865 distinctive m6A-modified mRNAs were identified, including 4,620 hypermethylated and 2,245 hypomethylated mRNAs, as well as 9,162 differentially expressed mRNAs, including 4,891 upregulated and 4,271 downregulated mRNAs, in the middle ear cholesteatoma group relative to the normal skin group. An association analysis between methylation and gene expression demonstrated that expression of 1,926 hypermethylated mRNAs was upregulated, while expression of 2,187 hypomethylated mRNAs and 38 hypermethylated mRNAs was downregulated. Moreover, GO analysis suggested that differentially methylated mRNAs might influence cellular processes and biological behaviors, such as cell differentiation, biosynthetic processes, regulation of molecular functions, and keratinization. KEGG pathway analysis demonstrated that the hypermethylated transcripts were involved in 26 pathways, including the Hippo signaling pathway, the p53 signaling pathway, and the inflammatory mediator regulation of transient receptor potential (TRP) channels, while the hypomethylated transcripts were involved in 13 pathways, including bacterial invasion of epithelial cells, steroid biosynthesis, and the Hippo signaling pathway. Conclusion: Our study presents m6A modification patterns in middle ear cholesteatoma, which may exert regulatory roles in middle ear cholesteatoma. The present study provides directions for mRNA m6A modification-based research on the epigenetic etiology and pathogenesis of middle ear cholesteatoma.

11.
Chemosphere ; 331: 138699, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37062391

ABSTRACT

Parabens and triclosan (TCS) have been extensively applied in personal care products (PCPs) as preservatives and antibacterial agents. However, their potentiality to disrupt the neurological system has induced increasing concern. The elderly population is at a higher risk of neurodegenerative disorder, although research on its association with PCP exposure remains scarce. Here, we measured the urinary levels of four parabens, TCS, and an oxidative stress marker among 540 participants from the Shenzhen aging-related disorder cohort during 2017-2018. The Mini-Mental State Examination (MMSE) was used to assess the cognitive status of participants. Their demographic, dietary, and behavioral factors were collected via questionnaire survey. Among the four paraben analogs, the median concentration of methyl parabens (MeP) was the highest (Low-risk group: 1.21 ng/mL, High-risk group: 1.64 ng/mL). TCS and 8-hydroxy-2'-deoxyguanosine (8-OHdG) were detected in more than 90% of the samples. Weighted quantile sum regression and quantile-based g-computation showed that the combined effect of all analytes was positively associated with the level of 8-OHdG. BtP, EtP and MeP were identified as the major contributors to the joint effect. After stratification by gender, females exhibited more pronounced changes in urinary 8-OHdG level than males. However, the positive correlation between co-exposure to parabens and TCS and cognitive impairment was not significant (p > 0.05) in both models, which warrants investigation with the larger sample size.


Subject(s)
Triclosan , Male , Female , Humans , Aged , Triclosan/toxicity , Triclosan/analysis , Parabens/analysis , 8-Hydroxy-2'-Deoxyguanosine , China , Cognition , Environmental Exposure/analysis
12.
Brain Sci ; 13(2)2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36831829

ABSTRACT

No definitive blood markers of DWI-FLAIR mismatch, a pivotal indicator of salvageable ischemic penumbra brain tissue, are known. We previously reported that CDC42 and RHOA are associated with the ischemic penumbra. Here, we investigated whether plasma CDC42 and RHOA are surrogate markers of DWI-FLAIR mismatch. Sixteen cynomolgus macaques (3 as controls and 13 for the stroke model) were included. Guided by digital subtraction angiography (DSA), a middle cerebral artery occlusion (MCAO) model was established by occluding the middle cerebral artery (MCA) with a balloon. MRI and neurological deficit scoring were performed to evaluate postinfarction changes. Plasma CDC42 and RHOA levels were measured by enzyme-linked immunosorbent assay (ELISA). The stroke model was successfully established in eight monkeys. Based on postinfarction MRI images, experimental animals were divided into a FLAIR (-) group (N = 4) and a FLAIR (+) group (N = 4). Plasma CDC42 in the FLAIR (-) group showed a significant decrease compared with that in the FLAIR (+) group (p < 0.05). No statistically significant difference was observed for plasma RHOA. The FLAIR (-) group showed a milder neurological function deficit and a smaller infarct volume than the FLAIR (+) group (p < 0.05). Therefore, plasma CDC42 might be a new surrogate marker for DWI-FLAIR mismatch.

13.
Sci Total Environ ; 858(Pt 1): 159820, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36349623

ABSTRACT

Parabens, triclosan (TCS), and triclocarban (TCC) are antimicrobial additives that are widely used in personal care products (PCPs) and may dysregulate infant gut microbiota and induce a series of chronic diseases. Dietary intake may be an underestimated exposure route of such antimicrobial additives in infants, but relevant data remain scarce. Therefore, this study determined five common preservatives, including methyl- (MeP), ethyl- (EtP), propyl- (PrP), butyl- (BuP), and benzyl-paraben (BeP), and two antimicrobials TCS and TCC, in major infant food sources (breastmilk, milk-based infant formula [MIF], and cereal-based complementary food [CCF]) in southern China. The health risks associated with dietary exposure among infants across different months of age were also evaluated. The results demonstrated a high incidence of MeP, EtP, PrP, and BeP in processed infant food products, while TCS and TCC were mainly detected in maternal breastmilk. Notably, MeP and EtP were found in all of the MIFs tested, while MeP, EtP, and BeP were detected in 85.6 %-100 % of the CCFs. By incorporating the human equivalent dose and an additional 10-fold margin of safety for infants into the health risk assessment, the 95th percentile hazard quotient of PrP via the ingestion of breastmilk among neonates exceeded 1. For the first time, the results showed that exposure to PrP via breastmilk intake may pose a considerable health risk to urban neonates in southern China. The health risks caused by antimicrobial exposure via ingesting MIF and CCF among infants were negligible. Thus, we recommend breastfeeding women reduce their consumption of PCPs and processed food, especially during the first month after delivery.


Subject(s)
Anti-Infective Agents , Triclosan , Infant , Infant, Newborn , Humans , Female , Parabens/analysis , Triclosan/analysis , Breast Feeding , Anti-Infective Agents/adverse effects , Anti-Bacterial Agents , China , Environmental Exposure/analysis
14.
Front Genet ; 14: 1292085, 2023.
Article in English | MEDLINE | ID: mdl-38259619

ABSTRACT

Branchiootic syndrome (BOS) is a rare, autosomal dominant syndrome characterized by malformations of the ear associated with hearing loss, second branchial arch anomalies, and the absence of renal anomalies. Herein, we report the case of an 8-year-old male patient with BOS. The proband also experiences mixed conductive and sensorineural hearing loss in the right ear, and severe-to-profound sensorineural hearing loss in the left ear. Preauricular pits, branchial fistulae, and cochlear hypoplasia were present bilaterally. Type III cup-shaped ear, and external auditory canal stenosis were detected in the right ear. Lateral semicircular canal-vestibule dysplasia was detected in the left ear. Moreover, the patient had unilateral secretory otitis media (SOM) in the right ear and bilateral vestibular hypofunction (VH), which has not been reported in previous studies. The patient's hearing on the right side was restored to nearly normal after myringotomy. Whole exome sequencing identified a novel frameshift mutation in EYA1 (NM_000503.6): c.1697_1698delinT [p.(Lys566IlefsTer73)] in the proband, which was defined a "pathogenic" mutation according to American College of Medical Genetics and Genomics guidelines. This is the first report of a child presenting with BOS, SOM and VH, which expands the known clinical manifestations of this syndrome. We also observed a novel EYA1 gene mutation in this patient with BOS, which enriches the mutation map and provides a reference for genetic diagnosis of this syndrome.

15.
Front Genet ; 13: 944932, 2022.
Article in English | MEDLINE | ID: mdl-36160014

ABSTRACT

Pre-eclampsia is a pregnancy-specific disease commonly occurring in late pregnancy and has always been threatening maternal and fetal lives, yet the etiology and pathogenesis of pre-eclampsia are still uncertain. To depict the overall changes of genes at the genome-wide level and identify potential biomarkers for early diagnosis of pre-eclampsia, we conducted this study by collecting placenta samples donated by six pregnancy women, among whom three healthy women were included as controls and three women were diagnosed with pre-eclampsia. The placental sample tissues were then subjected to high-throughput sequencing. Furthermore, we proceeded with bioinformatics analysis and formulated the hypothesis of pre-eclampsia development and verified the potential targets of pre-eclampsia by immunohistochemistry. Demographically, we found that the baseline characteristics of study subjects were highly homogeneous except for gestational weeks and blood pressure, where the blood pressure was higher and gestational weeks were shorter in the pre-eclampsia group (systolic blood pressure 123.33 ± 4.62 vs. 148.67 ± 3.79 mmHg, p = 0.046; diastolic blood pressure 79.00 ± 5.20 vs. 88.33 ± 2.89 mmHg, p = 0.068; gestational weeks 39.33 ± 1.03 vs. 35.76 ± 2.41, p = 0.050). Specific pathological changes were identified, shown as syncytial knots, fibrinoid necrosis, perivillous fibrin deposition, and vasculitis. For high-throughput sequencing, a total of 1,891 dysregulated genes were determined, of which 960 genes were downregulated and 931 genes were upregulated. The bioinformatics analysis indicated that these genes, with different molecular functions in different parts of cells, were primarily responsible for endothelium development and vascular process in the circulatory system, and more than 10 signaling pathways were involved. By focusing on the PI3K-Akt signaling pathway, Rap1 signaling pathway, and disease enrichment analysis item pre-eclampsia, TEK, CSF1, IGF1, and ANGPT2 were identified to promote the development of pre-eclampsia. After confirming the placental expression of these genes at the protein level, we proposed the pathogenesis of pre-eclampsia as follows: the downregulation of TEK, CSF1, IGF1, and ANGPT2 may inhibit trophoblast proliferation and affect the remodeling of spiral arteries, causing maternal and fetal malperfusion and impeding nutrient exchange, thereby leading to clinical manifestations of pre-eclampsia.

16.
J Mol Model ; 28(9): 247, 2022 Aug 06.
Article in English | MEDLINE | ID: mdl-35932378

ABSTRACT

FMS-like tyrosine kinase 3 (FLT3) serves as an important drug target for acute myeloid leukemia (AML), and gene mutations of FLT3 have been closely associated with AML patients with an incidence rate of ~ 30%. However, the mechanism of the clinically relevant F691L gatekeeper mutation conferred resistance to the drug gilteritinib remained poorly understood. In this study, multiple microsecond molecular dynamics (MD) simulations, end-point free energy calculations, and dynamic correlated and network analyses were performed to investigate the molecular basis of gilteritinib resistance to the FLT3-F691L mutation. The simulations revealed that the resistant mutation largely induced the conformational changes of the activation loop (A-loop), the phosphate-binding loop, and the helix αC of the FLT3 protein. The binding abilities of the gilteritinib to the wild-type and the F691L mutant were different through the binding free energy prediction. The simulation results further indicated that the driving force to determine the binding affinity of gilteritinib was derived from the differences in the energy terms of electrostatic and van der Waals interactions. Moreover, the per-residue free energy decomposition suggested that the four residues (Phe803, Gly831, Leu832, and Ala833) located at the A-loop of FLT3 had a significant impact on the binding affinity of gilteritinib to the F691L mutant. This study may provide useful information for the design of novel FLT3 inhibitors specially targeting the F691L gatekeeper mutant.


Subject(s)
Leukemia, Myeloid, Acute , fms-Like Tyrosine Kinase 3 , Aniline Compounds/pharmacology , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Mutation , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Pyrazines , fms-Like Tyrosine Kinase 3/genetics
17.
Front Bioeng Biotechnol ; 9: 575724, 2021.
Article in English | MEDLINE | ID: mdl-33585429

ABSTRACT

The effects of banana resistant starch (BRS) on obesity-related metabolic and intestinal flora were investigated in a high-fat diet-induced obesity model. After 6 weeks of intervention, the glucolipid metabolism index [blood glucose (GLU), total cholesterol (TC), triacylglycerol (TG), low density lipoprotein-cholesterol (LDL-C), and high density lipoprotein-cholesterol (HDL-C)], hormone index [leptin (LEP), insulin (INS), ghrelin, adiponectin (ADP), and thyroxine (T4)], and 16S rRNA sequencing analyses were performed for each group to explore the regulating effect of intestinal flora and the mechanism of weight loss in obese rats. The results showed that (1) BRS intervention significantly reduced the levels of GLU, TG, TC, LDL-C, LEP, and INS (p < 0.01) and increased the contents of ghrelin (p < 0.05) and ADP (p < 0.01). (2) BRS could improve the diversity of intestinal flora and regulate the overall structure of intestinal microorganisms, mainly by upregulating the Bacteroides/Firmicutes ratio and the relative abundance of Cyanobacteria and downregulating the relative abundances of Deferribacteres and Tenericutes (at the phylum level). BRS could inhibit the proliferation of Turicibacter, Romboutsia, and Oligella and increase the abundances of Bacteroides, Ruminococcaceae, and Lachnospiraceae (at the genus level). (3) Some significant correlations were observed between the gut microbiota and biomarkers. Turicibacter, Romboutsia, and Oligella were positively correlated with GLU, TG, TC, LEP, and INS and negatively correlated with ghrelin and ADP. Bacteroides, Parabacteroides, and Akkermansia were negatively correlated with GLU, TG, and TC. Conclusion: BRS had promising effects on weight loss, which could be associated with the improvement in host metabolism by regulating intestinal flora.

18.
Front Pharmacol ; 12: 792263, 2021.
Article in English | MEDLINE | ID: mdl-35082674

ABSTRACT

Ischemic stroke is a major type of stroke worldwide currently without effective treatment, although antiplatelet therapy is an existing option for it. In previous studies, heat shock protein 47 (Hsp47) was found to be expressed on the surface of human and mice platelets and to strengthen the interaction between platelets and collagen. In recent years, Col003 was discovered to inhibit the interaction of Hsp47 with collagen. We evaluated whether the Hsp47 inhibitor Col003 is a promising therapeutic agent for ischemic stroke. Here, we first verified that Hsp47 is also expressed on the surface of rat platelets, and its inhibitor Col003 significantly inhibited thrombus formation in the FeCl3-induced rat carotid arterial thrombus model. Both Col003 and clopidogrel did not alter the bleeding time or coagulation parameters, while aspirin increased the tail-bleeding time (p < 0.05). The low cytotoxicity level of Col003 to rat platelets and human liver cells was similar to those of aspirin and clopidogrel. Col003 inhibited collagen-induced platelet aggregation, adhesion, [Ca2+]i mobilization, P-selectin expression, reactive oxygen species production and the downstream signal pathway of collagen receptors. The results of the middle cerebral artery occlusion model indicated that Col003 has a protective effect against cerebral ischemic-reperfusion injury in rats. The Hsp47 inhibitor Col003 exerted antiplatelet effect and protective effect against brain damage induced by ischemic stroke through the inhibition of glycoprotein VI (GPVI)and mitogen-activated protein kinase (MAPK) signaling events, which might yield a new antiplatelet agent and strategy to treat ischemic stroke.

19.
Wound Repair Regen ; 26(2): 172-181, 2018 03.
Article in English | MEDLINE | ID: mdl-29719102

ABSTRACT

Hypertrophic scar pain, pruritus, and paresthesia symptoms are major and particular concerns for burn patients. However, because no effective and satisfactory methods exist for their alleviation, the clinical treatment for these symptoms is generally considered unsatisfactory. Therefore, their risk factors should be identified and prevented during management. We reviewed the medical records of 129 postburn hypertrophy scar patients and divided them into two groups for each of three different symptoms based on the University of North Carolina "4P" Scar Scale: patients with scar pain requiring occasional or continuous pharmacological intervention (HSc pain, n = 75) vs. patients without such scar pain (No HSc pain, n = 54); patients with scar pruritus requiring occasional or continuous pharmacological intervention (HSc pruritus, n = 63) vs. patients without such scar pruritus (No HSc pruritus, n = 66); patients with scar paresthesia that influenced the patients' daily activities (HSc paresthesia, n = 31) vs. patients without such scar paresthesia (No HSc paresthesia, n = 98). Three multivariable logistic regression models were built, respectively, to identify the risk factors for hypertrophic burn scar pain, pruritus, and paresthesia development. Multivariable analysis showed that hypertrophic burn scar pain development requiring pharmacological intervention was associated with old age (odds ratio [OR] = 1.046; 95% confidence interval [CI], 1.011-1.082, p = 0.009), high body mass index (OR = 1.242; 95%CI, 1.068-1.445, p = 0.005), 2-5-mm-thick postburn hypertrophic scars (OR = 3.997; 95%CI, 1.523-10.487, p = 0.005), and 6-12-month postburn hypertrophic scars (OR = 4.686; 95%CI, 1.318-16.653, p = 0.017). Hypertrophic burn scar pruritus development requiring pharmacological intervention was associated with smoking (OR = 3.239; 95%CI, 1.380-7.603; p = 0.007), having undergone surgical operation (OR = 2.236; 95%CI, 1.001-4.998; p = 0.049), and firm scars (OR = 3.317; 95%CI, 1.237-8.894; p = 0.017). Finally, hypertrophic burn scar paresthesia development which affected the patients' daily activities was associated with age (OR = 1.038; 95%CI, 1.002-1.075; p = 0.040), fire burns (OR = 0.041; 95%CI, 0.005-0.366; p = 0.004, other burns vs. flame burns), and banding and contracture scars (OR = 4.705; 95%CI, 1.281-17.288, p = 0.020).


Subject(s)
Burns/pathology , Cicatrix, Hypertrophic/pathology , Pain/physiopathology , Paresthesia/physiopathology , Pruritus/physiopathology , Wound Healing/physiology , Adult , Body Mass Index , Burns/complications , Burns/physiopathology , Cicatrix, Hypertrophic/complications , Cicatrix, Hypertrophic/physiopathology , Female , Humans , Longitudinal Studies , Male , Middle Aged , Pain/etiology , Pain Measurement , Paresthesia/etiology , Pruritus/etiology , Regional Blood Flow/physiology , Risk Factors
20.
Mol Med Rep ; 18(1): 1051-1057, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29845266

ABSTRACT

Abnormal blood-brain barrier (BBB) is a common pathological feature in brain damage. In the present study, a brain microvascular endothelial cell (BMEC) model was established to determine the role of the toll­like receptor 4 (TLR4)/protein kinase Cα (PKCα)/occludin signaling pathway in BBB dysfunction. Three small interfering (si)RNAs directed against PKCα were designed to investigate the molecular mechanisms of PKCα underlying BBB damage. BMECs were divided into 4 groups: Control group, TAK­242 (a TLR4 inhibitor) group, PKCα­siRNA group and TAK­242+PKCα­siRNA group. The results indicated that siRNA­3 was the most effective at silencing PKCα gene expression. Reverse transcription­quantitative polymerase chain reaction (RT­qPCR) analysis indicated no significant difference of TLR4 mRNA expression levels between three different treated groups and the Control group. However, PKCα mRNA expression in the PKCα­siRNA and TAK­242+PKCα­siRNA groups were significantly decreased compared with that in Control and TAK­242 groups. In addition, occludin mRNA expression in PKCα­siRNA and TAK­242+PKCα­siRNA groups were significantly higher compared with the Control group. Meanwhile, occluding expressions in three treated groups were also significantly higher compared with the Control group. Furthermore, TAK­242 treatment, PKCα­siRNA treatment, and TAK­242+PKCα­siRNA treatment could promote occludin junctional labeling compared with the Control group. The permeability of PKCα­siRNA and TAK­242+PKCα­siRNA groups was significantly promoted compared with the control group. The TLR4/PKCα/occludin signaling pathway was closely related to BBB damage. The present study will lead to an improved molecular understanding of BBB damage in the future.


Subject(s)
Blood-Brain Barrier/injuries , Blood-Brain Barrier/metabolism , Occludin/metabolism , Protein Kinase C-alpha/metabolism , Signal Transduction , Toll-Like Receptor 4/metabolism , Animals , Blood-Brain Barrier/pathology , RNA, Small Interfering/pharmacology , Rats , Rats, Wistar , Sulfonamides/pharmacology , Toll-Like Receptor 4/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL