Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 14(11)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38869598

ABSTRACT

Using KOH-modified wheat straw as the precursor, wheat straw biochar was produced through carbonization at 500 °C. Subsequently, a synthetic material containing nano-zero-valent iron (nZVI) was prepared via liquid phase reduction (nZVI-WSPC). To enhance its properties, chitosan (CTS) was used by crosslinking to form the new adsorbent named CTS@nZVI-WSPC. The impact of CTS on parameters such as mass ratio, initial pH value, and adsorbent dosage on the adsorption efficiency of Cr(VI) in solution was investigated through one-factor experiments. Isotherm adsorption and thermodynamic analysis demonstrated that the adsorption of Cr(VI) by CTS@nZVI-WSPC conforms to the Langmuir model, with a maximum adsorption capacity of 147.93 mg/g, and the adsorption process is endothermic. Kinetic analysis revealed that the adsorption process follows a pseudo-second-order kinetic model. The adsorption mechanism, as elucidated by SEM, FTIR, XPS, and XRD, suggests that the process may involve multiple mechanisms, including pore adsorption, electrostatic adsorption, chemical reduction, and surface chelation. The adsorption capacity of Cr(VI) by CTS@nZVI-WSPC remains high after five cycles. The adsorbent is simple to operate, economical, efficient, and reusable, making it a promising candidate for the treatment of Cr(VI) in water.

SELECTION OF CITATIONS
SEARCH DETAIL
...