Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(10)2024 May 17.
Article in English | MEDLINE | ID: mdl-38791539

ABSTRACT

Nitrogen is one of the important factors restricting the development of sesame planting and industry in China. Cultivating sesame varieties tolerant to low nitrogen is an effective way to solve the problem of crop nitrogen deficiency. To date, the mechanism of low nitrogen tolerance in sesame has not been elucidated at the transcriptional level. In this study, two sesame varieties Zhengzhi HL05 (ZZ, nitrogen efficient) and Burmese prolific (MD, nitrogen inefficient) in low nitrogen were used for RNA-sequencing. A total of 3964 DEGs (differentially expressed genes) and 221 DELs (differentially expressed lncRNAs) were identified in two sesame varieties at 3d and 9d after low nitrogen stress. Among them, 1227 genes related to low nitrogen tolerance are mainly located in amino acid metabolism, starch and sucrose metabolism and secondary metabolism, and participate in the process of transporter activity and antioxidant activity. In addition, a total of 209 pairs of lncRNA-mRNA were detected, including 21 pairs of trans and 188 cis. WGCNA (weighted gene co-expression network analysis) analysis divided the obtained genes into 29 modules; phenotypic association analysis identified three low-nitrogen response modules; through lncRNA-mRNA co-expression network, a number of hub genes and cis/trans-regulatory factors were identified in response to low-nitrogen stress including GS1-2 (glutamine synthetase 1-2), PAL (phenylalanine ammonia-lyase), CHS (chalcone synthase, CHS), CAB21 (chlorophyll a-b binding protein 21) and transcription factors MYB54, MYB88 and NAC75 and so on. As a trans regulator, lncRNA MSTRG.13854.1 affects the expression of some genes related to low nitrogen response by regulating the expression of MYB54, thus responding to low nitrogen stress. Our research is the first to provide a more comprehensive understanding of DEGs involved in the low nitrogen stress of sesame at the transcriptome level. These results may reveal insights into the molecular mechanisms of low nitrogen tolerance in sesame and provide diverse genetic resources involved in low nitrogen tolerance research.


Subject(s)
Gene Expression Profiling , Gene Expression Regulation, Plant , Gene Regulatory Networks , Nitrogen , RNA, Long Noncoding , RNA, Messenger , Sesamum , Stress, Physiological , Sesamum/genetics , Sesamum/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Nitrogen/metabolism , Stress, Physiological/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Gene Expression Profiling/methods , Transcriptome , Plant Proteins/genetics , Plant Proteins/metabolism
2.
Nat Mater ; 23(5): 596-603, 2024 May.
Article in English | MEDLINE | ID: mdl-38418925

ABSTRACT

Non-destructive processing of powders into macroscopic materials with a wealth of structural and functional possibilities has immeasurable scientific significance and application value, yet remains a challenge using conventional processing techniques. Here we developed a universal fibration method, using two-dimensional cellulose as a mediator, to process diverse powdered materials into micro-/nanofibres, which provides structural support to the particles and preserves their own specialties and architectures. It is found that the self-shrinking force drives the two-dimensional cellulose and supported particles to pucker and roll into fibres, a gentle process that prevents agglomeration and structural damage of the powder particles. We demonstrate over 120 fibre samples involving various powder guests, including elements, compounds, organics and hybrids in different morphologies, densities and particle sizes. Customized fibres with an adjustable diameter and guest content can be easily constructed into high-performance macromaterials with various geometries, creating a library of building blocks for different fields of applications. Our fibration strategy provides a universal, powerful and non-destructive pathway bridging primary particles and macroapplications.

3.
ACS Nano ; 16(5): 7525-7534, 2022 05 24.
Article in English | MEDLINE | ID: mdl-35499235

ABSTRACT

The demand for advanced safeguards has increased with a rise in terrorism and international conflicts. Traditional impact-resistant glass and ceramics have relatively high performance but have several drawbacks as well, such as inflexibility, heaviness, and high processing energy consumption. Herein, we propose sustainable lignocellulosic duplicates: the Pirarucu scale-inspired structures that can serve as "wood armor" with impressive damage tolerance. By accurately assembling a rigid laminated lignocellulose, with a soft shear-thickened fluid interlayer, into a Bouligand-like structure, the artificial wooden armor exhibits a 10-fold increase in impact resistance. This observation is similar to that of typical engineering materials (e.g., ceramics, glass, and alloys). However, our proposed material structure has the capability of blocking the enormous impact of a bullet while notably having approximately half the density of typical engineering materials. The high durability and damage resistance of wooden armor effectively prevents catastrophic damage when it is impacted upon. The design strategy presents a method for lightweight, high-performance, and sustainable bioinspired materials for special security applications.


Subject(s)
Biomimetic Materials , Biomimetic Materials/chemistry , Lignin , Glass
4.
Nano Lett ; 21(1): 397-404, 2021 01 13.
Article in English | MEDLINE | ID: mdl-33301320

ABSTRACT

Structural materials with excellent mechanical properties are vitally important for architectural application. However, the traditional structural materials with complex manufacturing processes cannot effectively regulate heat flow, causing a large impact on global energy consumption. Here, we processed a high-performance and inexpensive cooling structural material by bottom-up assembling delignified biomass cellulose fiber and inorganic microspheres into a 3D network bulk followed by a hot-pressing process; we constructed a cooling lignocellulosic bulk that exhibits strong mechanical strength more than eight times that of the pure wood fiber bulk and greater specific strength than the majority of structural materials. The cellulose acts as a photonic solar reflector and thermal emitter, enabling a material that can accomplish 24-h continuous cooling with an average dT of 6 and 8 °C during day and night, respectively. Combined with excellent fire-retardant and outdoor antibacterial performance, it will pave the way for the design of high-performance cooling structural materials.


Subject(s)
Cellulose , Wood , Cold Temperature , Hot Temperature , Phase Transition
5.
ACS Nano ; 14(2): 2036-2043, 2020 02 25.
Article in English | MEDLINE | ID: mdl-31934744

ABSTRACT

Nacre, an organic-inorganic composite biomaterial that forms an ordered multilayer microstructure after years of slow biomineralization, is known as the strongest and toughest material within the mollusc family. Its unique structure provides inspiration for robust artificial engineering materials. Lignocellulose is ultralightweight, abundant, and possesses a high mechanical performance and has been used for ages as a significant renewable raw material in wooden engineering composites. However, the inherent lack of mechanical properties of current wooden composites associated with the fragile microstructure has limited their applications in advanced engineering materials. Here, we develop a large-size ultralightweight artificial "wood nacre" with an ordered layer structure through a fast and scalable "mechanical/chemical mineralization and assembly" approach. The millimeter-thick artificial wooden nacre mimics the stratified construction of natural nacre, resulting in a bulk hybrid material that can achieve almost the same strength as natural nacre while consisting of only one-sixth of the total inorganic content of natural nacre. The specific strength and toughness of the artificial wooden nacre is even superior to engineering alloy materials (such as Cu and Fe). This approach represents an efficient strategy for the mass production of lightweight sustainable structural materials with high strength and toughness.

6.
Front Chem ; 6: 624, 2018.
Article in English | MEDLINE | ID: mdl-30619831

ABSTRACT

Thin and lightweight flexible lithium-ion batteries (LIBs) with high volumetric capacities are crucial for the development of flexible electronic devices. In the present work, we reported a paper-like ultrathin and flexible Si/carbon nanotube (CNT) composite anode for LIBs, which was realized by conformal electrodeposition of a thin layer of silicon on CNTs at ambient temperature. This method was quite simple and easy to scale up with low cost as compared to other deposition techniques, such as sputtering or CVD. The flexible Si/CNT composite exhibited high volumetric capacities in terms of the total volume of active material and current collector, surpassing the most previously reported Si-based flexible electrodes at various rates. In addition, the poor initial coulombic efficiency of the Si/CNT composites can be effectively improved by prelithiation treatment and a commercial red LED can be easily lighted by a full pouch cell using a Si/CNT composite as a flexible anode under flat or bent states. Therefore, the ultrathin and flexible Si/CNT composite is highly attractive as an anode material for flexible LIBs.

SELECTION OF CITATIONS
SEARCH DETAIL
...