Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chim Acta ; 1217: 340025, 2022 Jul 18.
Article in English | MEDLINE | ID: mdl-35690426

ABSTRACT

Detection technology for the determination of drugs, such as ketamine (KT), in sewage is of great significance in drug inspection and criminal investigation. Herein, we propose the utilization of ketamine magnetic molecularly imprinted polymers (Fe3O4@MIPs) as a target molecule identification and concentration container coupled with magnetic glassy carbon electrode (mGCE) for KT detection in sewage. Molecular simulations were employed to evaluate the most suitable monomer and ratio of functional monomer to template. Fe3O4@MIPs were prepared using microwave-assisted synthesis and possessed a "shell-core" structure with good recognition ability, superior adsorption capacity and fast kinetics toward KT. Additionally, a novel imprinted electrochemical sensor was constructed based on the magnetism of Fe3O4@MIPs for efficient monitoring of low concentrations of KT. The morphology and properties of Fe3O4@MIPs/mGCE were effectively characterized by element mapping, transmission electron microscopy, cyclic voltammetry and square wave voltammetry. KT detection was performed by square wave voltammetry within the range of 1.0 × 10-12 and 4.0 × 10-4 mol L-1, and the limit of detection was 8.0 × 10-13 mol L-1. Furthermore, Fe3O4@MIPs/mGCE was successfully tested for KT determination in domestic sewage samples.


Subject(s)
Ketamine , Magnetite Nanoparticles , Molecular Imprinting , Adsorption , Magnetite Nanoparticles/chemistry , Microwaves , Sewage
2.
Biosens Bioelectron ; 143: 111636, 2019 Oct 15.
Article in English | MEDLINE | ID: mdl-31476596

ABSTRACT

Ketamine is one of the most widely abused drugs in the world and poses a serious threat to human health and social stability; therefore, the ability to accurately monitor the substance in real-time is necessary. However, several problems still exists towards this goal, such as the generally low concentration of the target molecules disturbed in the complex samples that undergo analysis during criminal investigations. In this work, the sensitive and selective detection of ketamine was accomplished by molecularly imprinted electrochemical sensor. The molecularly imprinted membrane as a biomimetic recognition element was fabricated by the UV-induced polymerization of methacrylic acid (MAA) and ethylene glycol dimethacrylate (EGDMA) on a metal-organic framework/graphene nanocomposite (MOFs@G) modified screen-printed electrode. The screen printed electrode (SPE) provided good adhesion for the formation of the imprinted membranes and increased the stability of the sensor. The morphology and performance of the imprinted films were characterized in detail by scanning electron microscopy (SEM), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and differential pulse voltammetry (DPV). The experimental results demonstrated that the imprinted sensor had excellent sensitivity, selectivity, and long-term stability. It offered a low detection limit (4.0 × 10-11 mol L-1) and had a dynamic range from 1.0 × 10-10 mol L-1 to 4.0 × 10-5 mol L-1. Furthermore, the established method was successfully applied for the determination of ketamine in urine and saliva samples.


Subject(s)
Biosensing Techniques , Graphite/isolation & purification , Ketamine/isolation & purification , Molecular Imprinting , Ethylene Glycol/chemistry , Graphite/chemistry , Humans , Ketamine/chemistry , Metal-Organic Frameworks/chemistry , Methacrylates/chemistry , Nanocomposites/chemistry
3.
C R Biol ; 340(3): 145-155, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28215522

ABSTRACT

Orchardgrass (Dactylis glomerata L.), an excellent perennial and cool season forage species distributed in most temperate regions, has been cultivated widely in Western China. Amplified fragment length polymorphism markers were employed to determine the genetic variability and population structure among 41 indigenous orchardgrass accessions from Central Asia and Western China. On the basis of 531 polymorphic fragments resulted from eight primer combinations, polymorphic information content (PIC), marker index (MI) and resolving power (RP) averaged 0.252, 16.34 and 25.27 per primer combination, respectively, demonstrating the high efficiency and reliability of the markers used. We found relatively low differentiation (Fst=0.135) for three geographical groups, where Central Asia (CA) and Southwest China (SWC) group exhibited higher intra-population diversity (He=0.20 and 0.21) than that of the Xinjiang (XJ) group (He=0.14). We also did not detect a clear pattern of isolation by distance with a low value of r=0.301 in the Mantel test. STRUCTURE, FLOCK, UPGMA clustering and PCoA analyses showed that CA group is more related to the SWC Group rather than to the XJ Group. In addition, this study strongly suggests that geographical and ecological environmental factors together could better explain the genetic differentiation between different geographical regions than geographic isolation alone, especially for Xinjiang accessions. The present study also could support that Southwest China might be the internal diversity center of D. glomerata in China. The knowledge about the genetic variability of the Asian accessions examined contributes to rapid characterization, defining gene pools of wild accessions, and selecting appropriate germplasms for plant improvement.


Subject(s)
Dactylis/genetics , Amplified Fragment Length Polymorphism Analysis , Asia , Genetic Variation
4.
C R Biol ; 339(2): 60-7, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26874459

ABSTRACT

Simple sequence repeat (SSR) markers are widely applied in studies of plant molecular genetics due to their abundance in the genome, codominant nature, and high repeatability. However, microsatellites are not always available for the species to be studied and their isolation could be time- and cost-consuming. To investigate transferability in cross-species applications, 102 primer pairs previously developed in ryegrass and tall fescue were amplified across three allogamous ryegrass species including Lolium rigidum, Lolium perenne and Lolium multiflorum. Their highly transferability (100%) were evidenced. While, most of these markers were multiple loci, only 17 loci were selected for a robust, single-locus pattern, which may be due to the recentness of the genome duplication or duplicated genomic regions, as well as speciation. A total of 87 alleles were generated with an average of 5.1 per locus. The mean polymorphism information content (PIC) and observed heterozygosity (Ho) values at genus was 0.5532 and 0.5423, respectively. Besides, analysis of molecular variance (AMOVA) revealed that all three levels contributed significantly to the overall genetic variation, with the species level contributing the least (P<0.001). Also, the unweighted pair group method with arithmetic averaging dendrogram (UPGMA), Bayesian model-based STRUCTURE analysis and the principal coordinate analysis (PCoA) showed that accessions within species always tended to the same cluster firstly and then to related species. The results showed that these markers developed in related species are transferable efficiently across species, and likely to be useful in analyzing genetic diversity.


Subject(s)
Genetic Variation/genetics , Lolium/genetics , Microsatellite Repeats/genetics , Alleles , Bayes Theorem , Breeding/methods , Genetic Markers/genetics , Phylogeny , Polymorphism, Genetic/genetics , Species Specificity
5.
Hereditas ; 153: 9, 2016.
Article in English | MEDLINE | ID: mdl-28096771

ABSTRACT

BACKGROUND: Genetic diversity of 19 forage-type and 2 turf-type cultivars of tall fescue (Festuca arundinacea Schreb.) was revealed using SSR markers in an attempt to explore the genetic relationships among them, and examine potential use of SSR markers to identify cultivars by bulked samples. RESULTS: A total of 227 clear band was scored with 14 SSR primers and out of which 201 (88.6 %) were found polymorphic. The percentage of polymorphic bands (PPB) per primer pair varied from 62.5 to 100 % with an average of 86.9 %. The polymorphism information content (PIC) value ranged from 0.116 to 0.347 with an average of 0.257 and the highest PIC value (0.347) was noticed for primer NFA040 followed by NFA113 (0.346) whereas the highest discriminating power (D) of 1 was shown in NFA037 and LMgSSR02-01C. A Neighbor-joining dendrogram and the principal component analysis identified six major clusters and grouped the cultivars in agreement with their breeding histories. STRUCTURE analysis divided these cultivars into 3 sub-clades which correspond to distance based groupings. CONCLUSION: These findings indicates that SSR markers by bulking strategy are a useful tool to measure genetic diversity among tall fescue cultivars and could be used to supplement morphological data for plant variety protection.


Subject(s)
Festuca/genetics , Microsatellite Repeats , Polymorphism, Genetic , DNA, Plant/genetics , Festuca/classification , Genetic Markers , Sequence Analysis, DNA
6.
Molecules ; 19(12): 21541-59, 2014 Dec 22.
Article in English | MEDLINE | ID: mdl-25532848

ABSTRACT

Start codon targeted polymorphism (SCoT) analysis was employed to distinguish 37 whipgrass (Hemarthria compressa L.) clones and assess the genetic diversity and population structure among these genotypes. The informativeness of markers was also estimated using various parameters. Using 25 highly reproducible primer sets, 368 discernible fragments were generated. Of these, 282 (77.21%) were polymorphic. The number of alleles per locus ranged from five to 21, and the genetic variation indices varied. The polymorphism information content (PIC) was 0.358, the Shannon diversity index (H) was 0.534, the marker index (MI) was 4.040, the resolving power (RP) was 6.108, and the genotype index (GI) was 0.782. Genetic similarity coefficients (GS) between the accessions ranged from 0.563 to 0.872, with a mean of 0.685. Their patterns observed in a dendrogram constructed using the unweighted pair group method with arithmetic mean analysis (UPGMA) based on GS largely confirmed the results of principal coordinate analysis (PCoA). PCoA was further confirmed by Bayesian model-based STRUCTURE analysis, which revealed no direct association between genetic relationship and geographical origins as validated by Mantel's test (r = 0.2268, p = 0.9999). In addition, high-level genetic variation within geographical groups was significantly greater than that between groups, as determined by Shannon diversity analysis, analysis of molecular variance (AMOVA) and Bayesian analysis. Overall, SCoT analysis is a simple, effective and reliable technique for characterizing and maintaining germplasm collections of whipgrass and related species.


Subject(s)
Poaceae/genetics , Polymorphism, Genetic , Base Sequence , Bayes Theorem , China , Cluster Analysis , Codon, Initiator/genetics , DNA Primers/genetics , Genes, Plant , Genetic Markers , Haplotypes , Models, Genetic , Phylogeny , Phylogeography
SELECTION OF CITATIONS
SEARCH DETAIL
...