Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(19)2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37836953

ABSTRACT

This paper discusses a semantic segmentation framework and shows its application in agricultural intelligence, such as providing environmental awareness for agricultural robots to work autonomously and efficiently. We propose an ensemble framework based on the bagging strategy and the UNet network, using RGB and HSV color spaces. We evaluated the framework on our self-built dataset (Maize) and a public dataset (Sugar Beets). Then, we compared it with UNet-based methods (single RGB and single HSV), DeepLab V3+, and SegNet. Experimental results show that our ensemble framework can synthesize the advantages of each color space and obtain the best IoUs (0.8276 and 0.6972) on the datasets (Maize and Sugar Beets), respectively. In addition, including our framework, the UNet-based methods have faster speed and a smaller parameter space than DeepLab V3+ and SegNet, which are more suitable for deployment in resource-constrained environments such as mobile robots.

2.
Front Plant Sci ; 13: 897883, 2022.
Article in English | MEDLINE | ID: mdl-36420034

ABSTRACT

It is well known that crop classification is essential for genetic resources and phenotype development. Compared with traditional methods, convolutional neural networks can be utilized to identify features automatically. Nevertheless, crops and scenarios are quite complex, which makes it challenging to develop a universal classification method. Furthermore, manual design demands professional knowledge and is time-consuming and labor-intensive. In contrast, auto-search can create network architectures when faced with new species. Using rapeseed images for experiments, we collected eight types to build datasets (rapeseed dataset (RSDS)). In addition, we proposed a novel target-dependent search method based on VGGNet (target-dependent neural architecture search (TD-NAS)). The result shows that test accuracy does not differ significantly between small and large samples. Therefore, the influence of the dataset size on generalization is limited. Moreover, we used two additional open datasets (Pl@ntNet and ICL-Leaf) to test and prove the effectiveness of our method due to three notable features: (a) small sample sizes, (b) stable generalization, and (c) free of unpromising detections.

SELECTION OF CITATIONS
SEARCH DETAIL
...