Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Mol Biol ; 108(6): 605-619, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35169911

ABSTRACT

KEY MESSAGE: A genome-wide analysis identified 116 NAC genes in rose, including stress-related ones with different expression patterns under drought and salt stress. Silencing of RcNAC091, a member of the ATAF subfamily, decreased dehydration tolerance in rose. The NAC (NAM, ATAF, and CUC) transcription factors (TFs) are plant-specific proteins that regulate various developmental processes and stress responses. However, knowledge of the NAC TFs in rose (Rosa chinensis), one of the most important horticultural crops, is limited. In this study, 116 NAC genes were identified from the rose genome and classified into 16 subfamilies based on protein phylogenetic analysis. Chromosomal mapping revealed that the RcNAC genes were unevenly distributed on the seven chromosomes of rose. Gene structure and motif analysis identified a total of ten conserved motifs, of which motifs 1-7 were highly conserved and present in most rose NACs, while motifs 8-10 were present only in a few subfamilies. Further study of the stress-related RcNACs based on the transcriptome data showed differences in the expression patterns among the organs, at various floral developmental stages, and under drought and salt stress in rose leaves and roots. The stress-related RcNACs possessed cis-regulatory elements (CREs) categorized into three groups corresponding to plant growth and development, phytohormone response, and abiotic and biotic stress response. Reverse transcription-quantitative real-time PCR (RT-qPCR) analysis of 11 representative RcNACs revealed their differential expression in rose leaves and roots under abscisic acid (ABA), polyethylene glycol (PEG), and sodium chloride (NaCl) treatments. Furthermore, the silencing of RcNAC091 verified its role in positively regulating the dehydration stress response. Overall, the present study provides valuable insights into stress-related RcNACs and paves the way for stress tolerance in rose.


Subject(s)
Rosa , Droughts , Gene Expression Regulation, Plant , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Rosa/genetics , Rosa/metabolism , Stress, Physiological/genetics
2.
Plant Cell Rep ; 41(2): 395-413, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34820714

ABSTRACT

KEY MESSAGE: Nine RcBURPs have been identified in Rosa chinensis, and overexpression of RcBURP4 increased ABA, NaCl sensitivity, and drought tolerance in transgenic Arabidopsis. BURP proteins are unique to plants and may contribute greatly to growth, development, and stress responses of plants. Despite the vital role of BURP proteins, little is known about these proteins in rose (Rosa spp.). In the present study, nine genes belonging to the BURP family in R. chinensis were identified using multiple bioinformatic approaches against the rose genome database. The nine RcBURPs, with diverse structures, were located on all chromosomes of the rose genome, except for Chr2 and Chr3. Phylogenic analysis revealed that these RcBURPs can be classified into eight subfamilies, including BNM2-like, PG1ß-like, USP-like, RD22-like, BURP-V, BURP-VI, BURP-VII, and BURP-VIII. Conserved motif and exon-intron analyses indicated a conserved pattern within the same subfamily. The presumed cis-regulatory elements (CREs) within the promoter region of each RcBURP were analyzed and the results showed that all RcBURPs contained different types of CREs, including abiotic stress-, light response-, phytohormones response-, and plant growth and development-related CREs. Transcriptomic analysis revealed that a BURP-V member, RcBURP4, was induced in rose leaves and roots under mild and severe drought treatments. We then overexpressed RcBURP4 in Arabidopsis and examined its role under abscisic acid (ABA), NaCl, polyethylene glycol (PEG), and drought treatments. Nine stress-responsive genes expression were changed in RcBURP4-overexpressing leaves and roots. Furthermore, RcBURP4-silenced rose plants exhibited decreased tolerance to dehydration. The results obtained from this study provide the first comprehensive overview of RcBURPs and highlight the importance of RcBURP4 in rose plant.


Subject(s)
Arabidopsis/physiology , Phylogeny , Plant Proteins/genetics , Rosa/genetics , Abscisic Acid/pharmacology , Arabidopsis/drug effects , Arabidopsis/genetics , Chromosome Mapping , Droughts , Gene Expression Regulation, Plant , Genome-Wide Association Study , Germination , Plants, Genetically Modified , Polyethylene Glycols/pharmacology , Regulatory Sequences, Nucleic Acid , Rosa/physiology , Salinity , Sodium Chloride/pharmacology , Stress, Physiological/drug effects , Stress, Physiological/physiology
3.
Planta ; 254(6): 118, 2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34757465

ABSTRACT

MAIN CONCLUSION: A total of 27 rose thaumatin-like protein (TLP) genes were identified from the rose genome through bioinformatics analyses. RcTLP6 was found to confer salinity stress tolerance in rose. Thaumatin-like proteins (TLPs) play critical roles in regulating many biological processes, including abiotic and biotic stress responses in plants. Here, we conducted a genome-wide screen of TLPs in rose (Rosa chinensis) and identified 27 RcTLPs. The identified RcTLPs, as well as other TLPs from six different plant species, were placed into nine groups based on a phylogenetic analysis. An analysis of the intron-exon structures of the TLPs revealed a high degree of similarity. RcTLP genes were found on all chromosomes except for chromosome four. Cis-regulatory elements (CEs) were identified in the promoters of all RcTLPs, including CEs associated with growth, development and hormone-responsiveness, as well as abiotic and biotic responses, indicating they play diverse roles in rose. Transcriptomics analysis revealed that RcTLPs had tissue-specific expression patterns, and several root-preferential RcTLPs were responsive to drought and salinity stress. Quantitative PCR analysis of six RcTLPs under ABA, PEG and NaCl treatment confirmed the differentially expressed genes identified in the transcriptomics experiment. In addition, silencing RcTLP6 in rose leaves led to decreased tolerance to salinity stress. We also screened proteins which may interact with RcTLP6 to understand its biological roles. This study represents the first report of the TLP gene family in rose and expands the current understanding of the role that RcTLP6 plays in salt tolerance. These findings lay a foundation for future utilization of RcTLPs to improve rose abiotic stress tolerance.


Subject(s)
Rosa , Droughts , Gene Expression Regulation, Plant , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Rosa/genetics , Salt Tolerance/genetics , Stress, Physiological/genetics
4.
Plant Cell Physiol ; 61(12): 2153-2166, 2021 Feb 04.
Article in English | MEDLINE | ID: mdl-33165546

ABSTRACT

Rose (Rosa chinensis) is the most important ornamental crops worldwide. However, the physiological and molecular mechanism of rose under drought stress remains elusive. In this study, we analyzed the changes of photosynthetic and phytohormone levels in the leaves and roots of rose seedlings grown under control (no drought), mild drought (MD) and severe drought stress. The total chlorophyll content and water use efficiency were significantly enhanced under MD in rose leaves. In addition, the concentration of ABA was higher in the leaves compared to the roots, whereas the roots accumulated more IAA, methylindole-3-acetic acid and indole-3-propionic acid. We also constructed the first full-length transcriptome for rose, and identified 96,201,862 full-length reads of average length 1,149 bp that included 65,789 novel transcripts. A total of 3,657 and 4,341 differentially expressed genes (DEGs) were identified in rose leaves and roots respectively. KEGG pathway analysis showed enrichment of plant hormone, signal transduction and photosynthesis are among the DEGs. 42,544 alternatively spliced isoforms were also identified, and alternative 3' splice site was the major alternative splicing (AS) event among the DEGs. Variations in the AS patterns of three genes between leaves and roots indicated the possibility of tissue-specific posttranscriptional regulation in response to drought stress. Furthermore, 2,410 novel long non-coding RNAs were detected that may participate in regulating the drought-induced DEGs. Our findings identified previously unknown splice sites and new genes in the rose transcriptome, and elucidated the drought stress-responsive genes as well as their intricate regulatory networks.


Subject(s)
Plant Leaves/physiology , Plant Roots/physiology , Rosa/physiology , Transcriptome , Abscisic Acid/metabolism , Dehydration , Gene Expression Profiling , Gene Expression Regulation, Plant/physiology , Indoleacetic Acids/metabolism , Photosynthesis , Plant Growth Regulators/metabolism , Plant Leaves/metabolism , Plant Proteins/metabolism , Plant Proteins/physiology , Plant Roots/metabolism , RNA, Long Noncoding/metabolism , RNA, Long Noncoding/physiology , RNA, Plant/metabolism , RNA, Plant/physiology , Rosa/metabolism , Seedlings/growth & development , Seedlings/metabolism , Seedlings/physiology , Signal Transduction , Transcription Factors/metabolism , Transcription Factors/physiology , Transcriptome/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...