Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Vet Med Sci ; 10(3): e1412, 2024 05.
Article in English | MEDLINE | ID: mdl-38504633

ABSTRACT

BACKGROUND: Lipopolysaccharide (LPS) can induce systemic inflammation and affect the growth and development of poultry. As a kind of traditional Chinese medicine, polysaccharide of Atractylodes macrocephala Koidz (PAMK) can effectively improve the growth performance of animals and improve the immunity of animal bodies. OBJECTIVES: The purpose of this study was to investigate the effects of PAMK on LPS-induced inflammatory response, proliferation, differentiation and apoptosis of chicken embryonic myogenic cells. METHODS: We used chicken embryonic myogenic cells as a model by detecting EdU/MYHC immunofluorescence, the expression of inflammation, proliferation, differentiation-related genes and proteins and the number of apoptotic cells in the condition of adding LPS, PAMK, belnacasan (an inhibitor of Caspase1) or their combinations. RESULTS: The results showed that LPS stimulation increased the expression of inflammatory factors, inhibited proliferation and differentiation, and excessive apoptosis in chicken embryonic myogenic cells, and PAMK alleviated these adverse effects induced by LPS. After the addition of belnacasan (inhibitor of Caspase1), apoptosis in myogenic cells was inhibited, and therefore, the number of apoptotic cells and the expression of pro-apoptotic genes Caspase1 and Caspase3 were increased. In addition, belnacasan inhibited the increased expression of inflammatory factors, inhibited proliferation, differentiation and excessive apoptosis in chicken embryonic myogenic cells induced by LPS. CONCLUSIONS: This study provides a theoretical basis for further exploring the mechanism of action of PAMK and exogenous LPS on chicken embryonic myogenic cells and lays the foundation for the development and application of green feed additives in animal husbandry industry.


Subject(s)
Atractylodes , Lipopolysaccharides , Animals , Lipopolysaccharides/toxicity , Chickens , Polysaccharides/pharmacology , Apoptosis , Cell Proliferation , Inflammation/veterinary
2.
Int J Mol Sci ; 24(8)2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37108353

ABSTRACT

Skeletal muscle development from embryonic stages to hatching is critical for poultry muscle growth, during which DNA methylation plays a vital role. However, it is not yet clear how DNA methylation affects early embryonic muscle development between goose breeds of different body size. In this study, whole genome bisulfite sequencing (WGBS) was conducted on leg muscle tissue from Wuzong (WZE) and Shitou (STE) geese on embryonic day 15 (E15), E23, and post-hatch day 1. It was found that at E23, the embryonic leg muscle development of STE was more intense than that of WZE. A negative correlation was found between gene expression and DNA methylation around transcription start sites (TSSs), while a positive correlation was observed in the gene body near TTSs. It was also possible that earlier demethylation of myogenic genes around TSSs contributes to their earlier expression in WZE. Using pyrosequencing to analyze DNA methylation patterns of promoter regions, we also found that earlier demethylation of the MyoD1 promoter in WZE contributed to its earlier expression. This study reveals that DNA demethylation of myogenic genes may contribute to embryonic leg muscle development differences between Wuzong and Shitou geese.


Subject(s)
DNA Demethylation , Geese , Animals , Geese/genetics , Gene Expression Regulation, Developmental , Muscle, Skeletal/physiology , DNA Methylation , Muscle Development/genetics
3.
Vet Sci ; 9(11)2022 Nov 06.
Article in English | MEDLINE | ID: mdl-36356092

ABSTRACT

Lipopolysaccharide (LPS) can trigger a series of immune reactions, leading to the occurrence of disease and a decrease in the growth performance of geese. However, the mechanisms of LPS in geese muscle development have not been reported. This study aimed to investigate the effects and mechanisms of LPS on proliferation and differentiation of goose embryonic myoblasts. Embelin and belnacasan combined with LPS were used to explore these effects. Our results demonstrated that LPS significantly induced inflammatory cytokine production in both proliferation and differentiation stages. LPS and embelin treatment significantly improved the proliferation ability (p < 0.05), while LPS reduced the differentiation ability of goose embryonic myoblasts. By adding embelin, the differentiation ability of myoblasts was enhanced, while by adding belnacasan, LPS treatment led to a lower differentiation ability. Combined with the correlation of the expression levels of myogenic, cell cycle, and inflammatory-related genes and proteins, it is speculated that one of the reason for the decrease of differentiation ability of goose embryo myoblasts induced by LPS is the increase of the expression levels of pro-inflammatory factors. Moreover, LPS, embelin and belnacasan, and LPS treatments could significantly increase the apoptosis rate of goose embryonic myoblasts. Taken together, these findings suggest that LPS promotes the proliferation and differentiation of goose embryonic myoblasts by promoting cytokine expression and appropriate apoptosis processes. These findings lay a foundation for the study of the mechanisms of LPS in goose muscle development.

4.
Int J Mol Sci ; 20(1)2018 Dec 25.
Article in English | MEDLINE | ID: mdl-30585252

ABSTRACT

Fluoxetine, a member of the class of selective serotonin reuptake inhibitors, is a racemic mixture and has an anxiolytic effect in rodents. Previously, we have shown that fluoxetine can up-regulate melanin synthesis in B16F10 melanoma cells and normal human melanocytes (NMHM). However, the role of r-fluoxetine and s-fluoxetine, in the regulation of melanin synthesis, is still unknown. Here, we show how r-fluoxetine plays a critical role in fluoxetine enhancing melanogenesis, both in vivo and vitro, by up-regulating tyrosinase (TYR) and the microphthalmia-associated transcription factor (MITF) expression, whereas, s-fluoxetine does not show any effect in the vivo and vitro systems. In addition, we found that r-fluoxetine induced melanin synthesis through the serotonin1A receptor (5-HT1A) and serotonin 2A receptor (5-HT2A). Furthermore, r-fluoxetine increased the phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK), without affecting the phosphorylation of extracellularly responsive kinase (ERK1/2) and c-Jun N-terminal kinase (JNK). These data suggest that r-fluoxetine may be used as a drug for skin hypopigmentation disorders.


Subject(s)
Fluoxetine/pharmacology , Melanins/metabolism , Selective Serotonin Reuptake Inhibitors/pharmacology , Signal Transduction/drug effects , Up-Regulation/drug effects , Animals , Cell Line, Tumor , Embryo, Nonmammalian/drug effects , Embryo, Nonmammalian/metabolism , Melanocytes/cytology , Melanocytes/drug effects , Melanocytes/metabolism , Mice , Microphthalmia-Associated Transcription Factor/metabolism , Monophenol Monooxygenase/metabolism , Phosphorylation/drug effects , Promoter Regions, Genetic , Receptor, Serotonin, 5-HT1A/metabolism , Receptor, Serotonin, 5-HT2A/metabolism , Stereoisomerism , Zebrafish , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
5.
FASEB J ; 32(6): 3193-3214, 2018 06.
Article in English | MEDLINE | ID: mdl-29430989

ABSTRACT

Substance P (SP) is a candidate mediator along the brain-skin axis and can mimic the effects of stress to regulate melanogenesis. Previously, we and others have found that the regulation of SP for pigmentary function was mediated by neurokinin 1 receptor (NK1R). Emerging evidence has accumulated that psychologic stress can induce dysfunction in the cutaneous serotonin 5-hydroxytryptamine (5-HT)-5-HT1A/1B receptor system, thereby resulting in skin hypopigmentation. Moreover, NK1R and 5-HTR (except 5-HT3) belong to GPCR. The present study aimed at assessing the possible existence of NK1R-5-HTR interactions and related melanogenic functions. Western blot and PCR detection revealed that SP reduced expression of 5-HT1A receptor via the NK1 receptor. Biochemical analyses showed that NK1R and 5-HT1AR could colocalize and interact in a cell and in the skin. When the N terminus of the NK1R protein was removed NK1R surface targeting was prevented, the interaction between NK1R-5-HT1AR decreased, and the depigmentation caused by SP and WAY100635 could be rescued. Importantly, pharmaceutical coadministration of NK1R agonist (SP) and 5-HT1A antagonist (WAY100635) enhanced the NK1-5-HT1A receptor coimmunoprecipitation along with the depigmentary response. SP and WAY100635 cooperation elicited activation of a signaling cascade (the extracellular, regulated protein kinase p-JNK signaling pathway) and inhibition of p70S6K1 phosphorylation and greatly reduced melanin production in vitro and in vivo in mice and zebrafish. Moreover, the SP-induced depigmentation response did not be occur in 5-htr1aa+/- zebrafish embryos. Taken together, the results of our systemic study increases our knowledge of the roles of NK1R and 5-HT1AR in melanogenesis and provides possible, novel therapeutic strategies for treatment of skin hypo/hyperpigmentation.-Wu, H., Zhao, Y., Huang, Q., Cai, M., Pan, Q., Fu, M., An, X., Xia, Z., Liu, M., Jin, Y., He, L., Shang, J. NK1R/5-HT1AR interaction is related to the regulation of melanogenesis.


Subject(s)
Melanins/biosynthesis , Receptor, Serotonin, 5-HT1A/metabolism , Receptors, Neurokinin-1/metabolism , Skin Pigmentation , Skin/metabolism , Animals , Cell Line, Tumor , HEK293 Cells , Humans , Melanins/genetics , Mice , Neurokinin-1 Receptor Antagonists/pharmacology , Piperazines/pharmacology , Pyridines/pharmacology , Receptor, Serotonin, 5-HT1A/genetics , Receptors, Neurokinin-1/genetics , Serotonin 5-HT1 Receptor Antagonists/pharmacology , Skin/pathology , Stress, Psychological/genetics , Stress, Psychological/metabolism , Substance P/metabolism , Substance P/pharmacology , Zebrafish/genetics , Zebrafish/metabolism
6.
PLoS One ; 11(9): e0162570, 2016.
Article in English | MEDLINE | ID: mdl-27606422

ABSTRACT

Dermatosis often as a chronic disease requires effective long-term treatment; a comprehensive evaluation of mental health of dermatology drug does not receive enough attention. An interaction between dermatology and psychiatry has been increasingly described. Substantial evidence has accumulated that psychological stress can be associated with pigmentation, endocrine and immune systems in skin to create the optimal responses against pathogens and other physicochemical stressors to maintain or restore internal homeostasis. Additionally, given the common ectodermal origin shared by the brain and skin, we are interested in assessing how disruption of skin systems (pigmentary, endocrine and immune systems) may play a key role in brain functions. Thus, we selected three drugs (hydroquinone, isotretinoin, tacrolimus) with percutaneous excessive delivery to respectively intervene in these systems and then evaluate the potential neurotoxic effects. Firstly, C57BL/6 mice were administrated a dermal dose of hydroquinone cream, isotretinoin gel or tacrolimus ointment (2%, 0.05%, 0.1%, respectively, 5 times of the clinical dose). Behavioral testing was performed and levels of proteins were measured in the hippocampus. It was found that mice treated with isotretinoin or tacrolimus, presented a lower activity in open-field test and obvious depressive-like behavior in tail suspension test. Besides, they damaged cytoarchitecture, reduced the level of 5-HT-5-HT1A/1B system and increased the expression of apoptosis-related proteins in the hippocampus. To enable sensitive monitoring the dose-response characteristics of the consecutive neurobehavioral disorders, mice received gradient concentrations of hydroquinone (2%, 4%, 6%). Subsequently, hydroquinone induced behavioral disorders and hippocampal dysfunction in a dose-dependent response. When doses were high as 6% which was 3 times higher than 2% dose, then 100% of mice exhibited depressive-like behavior. Certainly, 6% hydroquinone exposure elicited the most serious impairment of hippocampal structure and survival. The fact that higher doses of hydroquinone are associated with a greater risk of depression is further indication that hydroquinone is responsible for the development of depression. These above data demonstrated that chronic administration of different dermatology drugs contributed into common mental distress. This surprising discovery of chemical stressors stimulating the hippocampal dysfunction, paves the way for exciting areas of study on the cross-talk between the skin and the brain, as well as is suggesting how to develop effective and safe usage of dermatological drugs in daily practice.


Subject(s)
Behavior, Animal , Drug Delivery Systems , Neurochemistry , Neurotoxicity Syndromes/etiology , Administration, Topical , Animals , Apoptosis/drug effects , Behavior, Animal/drug effects , Cell Survival/drug effects , Hippocampus/pathology , Hydroquinones/administration & dosage , Hydroquinones/toxicity , Isotretinoin/administration & dosage , Isotretinoin/toxicity , Male , Mice, Inbred C57BL , Models, Biological , Receptor, Serotonin, 5-HT1A/metabolism , Receptor, Serotonin, 5-HT1B/metabolism , Serotonin/metabolism , Tacrolimus/administration & dosage , Tacrolimus/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...