Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Sci ; 13(2)2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36831858

ABSTRACT

Autism spectrum disorder (ASD) is a congenital, lifelong neurodevelopmental disorder whose main symptom is impaired social communication and interaction. However, no drug can treat social deficits in patients with ASD, and treatments to alleviate social behavioral deficits are sorely needed. Here, we examined the effect of oral supplementation of maca (Lepidium meyenii) on social deficits of in utero-exposed valproic acid (VPA) mice, widely used as an ASD model. Although maca is widely consumed as a fertility enhancer and aphrodisiac, it possesses multiple beneficial activities. Additionally, it benefits learning and memory in experimental animal models. Therefore, the effect of maca supplementation on the social behavioral deficit of VPA mice was assessed using a social interaction test, a three-stage open field test, and a five-trial social memory test. The oral supplementation of maca attenuated social interaction behavior deficit and social memory impairment. The number of c-Fos-positive cells and the percentage of c-Fos-positive oxytocin neurons increased in supraoptic and paraventricular neurons of maca-treated VPA mice. These results reveal for the first time that maca is beneficial to social memory and that it restores social recognition impairments by augmenting the oxytocinergic neuronal pathways, which play an essential role in diverse social behaviors.

2.
Neurosci Lett ; 788: 136827, 2022 09 25.
Article in English | MEDLINE | ID: mdl-35944594

ABSTRACT

Autism spectrum disorder (ASD) is a heterogeneously pervasive developmental disorder that usually occurs before 3 years old. Animal models of psychiatric disorders are essential for elucidating the underlying preclinical neural mechanisms. Mice that are prenatally exposed to valproic acid (VPA, F1) are widely used as an ASD model. Epigenetics has recently been suggested as a contributor to ASD etiology with the hypothesis that epigenetic marks can be transgenerationally inherited. Previous studies have indicated that autism-like behavioral phenotypes detected in F1 VPA mice transgenetically appear in F2 and F3 generations. However, studies on the autism-like behavioral phenotypes during the early postnatal days in subsequent generations are scarce. Here, the behavioral deficit on postnatal day 5 of the F2 generation was examined to assess the onset of ASD symptoms. Communication disorders were examined by analyzing maternal separation-induced ultrasonic vocalizations (USVs). Although the duration and frequency of USVs were not significantly altered, the emission rate was significantly lower in F2 VPA pups. Furthermore, the locomotive activity with or without littermates was altered in F2 VPA pups. The data of the current study suggest that social deficit and impaired locomotion are inherited by the subsequent generation and were apparent on early postnatal day 5.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Prenatal Exposure Delayed Effects , Animals , Autism Spectrum Disorder/chemically induced , Autistic Disorder/chemically induced , Behavior, Animal , Communication , Disease Models, Animal , Female , Humans , Locomotion , Maternal Deprivation , Mice , Prenatal Exposure Delayed Effects/chemically induced , Valproic Acid/pharmacology
3.
Front Neurosci ; 16: 858070, 2022.
Article in English | MEDLINE | ID: mdl-35873827

ABSTRACT

Investigating the neurocircuit and synaptic sites of action of oxytocin (OT) in the brain is critical to the role of OT in social memory and behavior. To the same degree, it is important to understand how OT is transported to the brain from the peripheral circulation. To date, of these, many studies provide evidence that CD38, CD157, and receptor for advanced glycation end-products (RAGE) act as regulators of OT concentrations in the brain and blood. It has been shown that RAGE facilitates the uptake of OT in mother's milk from the digestive tract to the cell surface of intestinal epithelial cells to the body fluid and subsequently into circulation in male mice. RAGE has been shown to recruit circulatory OT into the brain from blood at the endothelial cell surface of neurovascular units. Therefore, it can be said that extracellular OT concentrations in the brain (hypothalamus) could be determined by the transport of OT by RAGE from the circulation and release of OT from oxytocinergic neurons by CD38 and CD157 in mice. In addition, it has recently been found that gavage application of a precursor of nicotinamide adenine dinucleotide, nicotinamide riboside, for 12 days can increase brain OT in mice. Here, we review the evaluation of the new concept that RAGE is involved in the regulation of OT dynamics at the interface between the brain, blood, and intestine in the living body, mainly by summarizing our recent results due to the limited number of publications on related topics. And we also review other possible routes of OT recruitment to the brain.

SELECTION OF CITATIONS
SEARCH DETAIL
...