Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Publication year range
1.
Sheng Li Xue Bao ; 71(4): 597-603, 2019 Aug 25.
Article in Chinese | MEDLINE | ID: mdl-31440757

ABSTRACT

Central nervous system injury leads to irreversible neuronal loss and glial scar formation, which ultimately results in persistent neurological dysfunction. Regenerative medicine suggests that replenishing missing neurons may be an ideal approach to repair the damage. Recent researches showed that many mature cells could be transdifferentiated into functional neurons by reprogramming. Therefore, reprogramming endogenous glia in situ to produce functional neurons shows great potential and unique advantage for repairing neuronal damage and treating neurodegenerative diseases. The present review summarized the current research progress on in situ transdifferentiation in the central nervous system, focusing on the cell types, characteristics and research progress of glial cells that could be transdifferentiated in situ, in order to provide theoretical basis for the development of new therapeutic strategies of neuronal injury and further clinical application.


Subject(s)
Cell Transdifferentiation , Cellular Reprogramming , Central Nervous System/cytology , Neuroglia/cytology , Neurons/cytology , Humans , Neurodegenerative Diseases
2.
J Mol Neurosci ; 67(2): 173-180, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30471009

ABSTRACT

The cold-inducible protein RBM3 mediates hypothermic neuroprotection against nitric oxide (NO)-induced cell death. Meanwhile, it is well-known that cyclooxygenase-2 (COX-2) is upregulated by RBM3 in several types of cells; however, it is still unclear whether COX-2 contributes to the neuroprotective effects of mild hypothermia/RBM3 against NO-induced cell death. Using human SH-SY5Y neuroblastoma cells, it was revealed that NO remarkably downregulates the expression of COX-2 at both mRNA and protein levels. When COX-2 was silenced using siRNA technique, cells became more sensitive to NO-induced cell death. Conversely, the overexpression of COX-2 significantly prevented NO-induced cell death in SH-SY5Y cells, indicating a pro-survival role of COX-2. Upon mild hypothermia pre-treatment, COX-2 was notably induced at both mRNA and protein levels; however, COX-2 silencing abrogated hypothermia-related neuroprotection against NO-induced cell death. Furthermore, it was revealed that either silencing or overexpression of RBM3 had no effects on the expression of COX-2 in SH-SY5Y cells. These findings suggest that mild hypothermia could protect neuroblastoma cells against NO-induced cell death by inducing COX-2 in a RBM3-independent manner.


Subject(s)
Cold Temperature , Cyclooxygenase 2/metabolism , Neurons/metabolism , Nitric Oxide/toxicity , Cell Line, Tumor , Cell Survival , Humans , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...