Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
2.
Int Immunopharmacol ; 133: 112126, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38669946

ABSTRACT

Type 17 helper T cells (Th17)-dominant neutrophilic airway inflammation is critical in the pathogenesis of steroid-resistant airway inflammation such as severe asthma. Small extracellular vesicles (sEV) derived from human mesenchymal stem cells (MSCs) display extensive therapeutic effects and advantages in many diseases. However, the role of MSC-sEV in Th17-dominant neutrophilic airway inflammation and the related mechanisms are still poorly studied. Here we found that MSC-sEV significantly alleviated the infiltration of inflammatory cells in peribronchial interstitial tissues and reduced levels of inflammatory cells, especially neutrophils, in bronchoalveolar lavage fluids (BALF) of mice with neutrophilic airway inflammation. Consistently, MSC-sEV significantly decreased levels of IL-17A in BALF and Th17 in lung tissues. Furthermore, we found that labelled MSC-sEV were taken up by human CD4+ T cells most obviously at 12 h after incubation, and distributed mostly in mouse lungs. More importantly, potential signaling pathways involved in the MSC-sEV mediated inhibition of Th17 polarization were found using RNA sequencing. Using Western blot, JAK2-STAT3 pathway was identified as an important role in the inhibition of Th17 polarization by MSC-sEV. We found that proteins in MSC-sEV were mostly involved in the therapeutic effects of MSC-sEV. In total, our study suggested that MSC-sEV could be a potential therapeutic strategy for the treatment of neutrophilic airway inflammation.


Subject(s)
Extracellular Vesicles , Mesenchymal Stem Cells , Neutrophils , STAT3 Transcription Factor , Th17 Cells , Th17 Cells/immunology , Humans , Animals , Extracellular Vesicles/metabolism , Extracellular Vesicles/immunology , Mesenchymal Stem Cells/immunology , Mesenchymal Stem Cells/metabolism , Mice , Neutrophils/immunology , STAT3 Transcription Factor/metabolism , Janus Kinase 2/metabolism , Interleukin-17/metabolism , Lung/immunology , Lung/pathology , Mice, Inbred C57BL , Cells, Cultured , Bronchoalveolar Lavage Fluid/immunology , Bronchoalveolar Lavage Fluid/cytology , Asthma/immunology , Asthma/therapy , Male , Signal Transduction , Female , Disease Models, Animal
3.
J Extracell Vesicles ; 13(2): e12404, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38326288

ABSTRACT

Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly.


Subject(s)
Exosomes , Extracellular Vesicles , Extracellular Vesicles/metabolism , Exosomes/metabolism , Biological Transport , Biomarkers/metabolism , Phenotype
4.
Stem Cell Res Ther ; 14(1): 369, 2023 12 13.
Article in English | MEDLINE | ID: mdl-38093354

ABSTRACT

BACKGROUNDS: Allergic airway inflammation is prevalent worldwide and imposes a considerable burden on both society and affected individuals. This study aimed to investigate the therapeutic advantages of mesenchymal stem cells (MSCs) overexpressed interleukin-10 (IL-10) for the treatment of allergic airway inflammation, as both IL-10 and MSCs possess immunosuppressive properties. METHODS: Induced pluripotent stem cell (iPSC)-derived MSCs were engineered to overexpress IL-10 via lentiviral transfection (designated as IL-10-MSCs). MSCs and IL-10-MSCs were administered intravenously to mice with allergic inflammation induced by ovalbumin (OVA), and the features of allergic inflammation including inflammatory cell infiltration, Th cells in the lungs, and T helper 2 cell (Th2) cytokine levels in bronchoalveolar lavage fluid (BALF) were examined. MSCs and IL-10-MSCs were co-cultured with CD4+ T cells from patients with allergic rhinitis (AR), and the levels of Th2 cells and corresponding type 2 cytokines were studied. RNA-sequence was performed to further investigate the potential effects of MSCs and IL-10-MSCs on CD4+ T cells. RESULTS: Stable IL-10-MSCs were established and characterised by high IL-10 expression. IL-10-MSCs significantly reduced inflammatory cell infiltration and epithelial goblet cell numbers in the lung tissues of mice with allergic airway inflammation. Inflammatory cell and cytokine levels in BALF also decreased after the administration of IL-10-MSCs. Moreover, IL-10-MSCs showed a stronger capacity to inhibit the levels of Th2 after co-cultured with CD4+ T cells from patients with AR. Furthermore, we elucidated lower levels of IL-5 and IL-13 in IL-10-MSCs treated CD4+ T cells, and blockade of IL-10 significantly reversed the inhibitory effects of IL-10-MSCs. We also reported the mRNA profiles of CD4+ T cells treated with IL-10-MSCs and MSCs, in which IL-10 played an important role. CONCLUSION: IL-10-MSCs showed positive effects in the treatment of allergic airway inflammation, providing solid support for the use of genetically engineered MSCs as a potential novel therapy for allergic airway inflammation.


Subject(s)
Mesenchymal Stem Cells , Rhinitis, Allergic , Animals , Humans , Mice , Bronchoalveolar Lavage Fluid , Cytokines/metabolism , Disease Models, Animal , Inflammation/therapy , Inflammation/metabolism , Interleukin-10/genetics , Interleukin-10/metabolism , Lung , Mesenchymal Stem Cells/metabolism , Mice, Inbred BALB C , Ovalbumin
5.
J Control Release ; 364: 546-561, 2023 12.
Article in English | MEDLINE | ID: mdl-37939851

ABSTRACT

Noise-induced hearing loss (NIHL) is one of the most prevalent acquired sensorineural hearing loss etiologies and is characterized by the loss of cochlear hair cells, synapses, and nerve terminals. Currently, there are no agents available for the treatment of NIHL because drug delivery to the inner ear is greatly limited by the blood-labyrinth barrier. In this study, we used mesenchymal stem cell-derived small extracellular vesicles (MSC-sEVs) as nanoscale vehicles to deliver brain-derived neurotrophic factor (BDNF) and evaluated their protective effects in a mouse model of NIHL. Following intravenous administration, BDNF-loaded sEVs (BDNF-sEVs) efficiently increased the expression of BDNF protein in the cochlea. Systemic application of sEVs and BDNF-sEVs significantly attenuated noise-induced cochlear hair cell loss and NIHL in CBA/J mice. BDNF-sEVs also alleviated noise-induced loss of inner hair cell ribbon synapses and cochlear nerve terminals. In cochlear explants, sEVs and BDNF-sEVs effectively protected hair cells against H2O2-induced cell loss. Additionally, BDNF-sEVs remarkably ameliorated H2O2-induced oxidative stress, cell apoptosis, and cochlear nerve terminal degeneration. Transcriptomic analysis revealed that many mRNAs and miRNAs were involved in the protective actions of BDNF-sEVs against oxidative stress. Collectively, our findings reveal a novel therapeutic strategy of MSC-sEVs-mediated BDNF delivery for the treatment of NIHL.


Subject(s)
Extracellular Vesicles , Hearing Loss, Noise-Induced , Animals , Mice , Brain-Derived Neurotrophic Factor , Cochlea/metabolism , Extracellular Vesicles/metabolism , Hearing Loss, Noise-Induced/drug therapy , Hearing Loss, Noise-Induced/prevention & control , Hydrogen Peroxide/metabolism , Mice, Inbred CBA
7.
Eur J Immunol ; 53(10): e2149510, 2023 10.
Article in English | MEDLINE | ID: mdl-37572379

ABSTRACT

Mesenchymal stromal cells (MSCs) have long been considered a potential tool for treatment of allergic inflammatory diseases, owing to their immunomodulatory characteristics. In recent decades, the medical utility of MSCs has been evaluated both in vitro and in vivo, providing a foundation for therapeutic applications. However, the existing limitations of MSC therapy indicate the necessity for novel therapies. Notably, small extracellular vesicles (sEV) derived from MSCs have emerged rapidly as candidates instead of their parental cells. The acquisition of abundant and scalable MSC-sEV is an obstacle for clinical applications. The potential application of MSC-sEV in allergic diseases has attracted increasing attention from researchers. By carrying biological microRNAs or active proteins, MSC-sEV can modulate the function of various innate and adaptive immune cells. In this review, we summarise the recent advances in the immunomodulatory properties of MSCs in allergic diseases, the cellular sources of MSC-sEV, and the methods for obtaining high-quality human MSC-sEV. In addition, we discuss the immunoregulatory capacity of MSCs and MSC-sEV for the treatment of asthma, atopic dermatitis, and allergic rhinitis, with a special emphasis on their immunoregulatory effects and the underlying mechanisms of immune cell modulation.


Subject(s)
Asthma , Extracellular Vesicles , Mesenchymal Stem Cells , MicroRNAs , Humans , Extracellular Vesicles/metabolism , MicroRNAs/metabolism , Asthma/therapy , Asthma/metabolism , Immunomodulation
8.
Huan Jing Ke Xue ; 44(7): 4100-4108, 2023 Jul 08.
Article in Chinese | MEDLINE | ID: mdl-37438307

ABSTRACT

As a good passivation agent for heavy metals, modified biochar has been widely used in environmental remediation. In order to explore the effects of different modification methods on arsenic (As) and cadmium (Cd) passivation in soil by biochar, this study used co-precipitation and impregnation pyrolysis to prepare iron-modified biochar. Through adsorption experiments and soil culture experiments, the properties of biochar, adsorption capacity, and the As and Cd passivation ability in soil were analyzed. The results showed that both modification methods could increase the iron (Fe) content and zero charge point of biochar, and the Fe minerals supported by Fe-modified biochar (FeBC-1) prepared by co-precipitation were mainly Fe3O4, FeO(OH), and γ-Fe2O3. The Fe-modified biochar (FeBC-2) prepared by impregnation pyrolysis mainly consisted of α-Fe2O3 and γ-Fe2O3. FeBC-1 showed strong adsorption and removal ability for As and Cd, with a removal rate of 21.40%-34.14%, which could significantly promote the conversion of non-obligate adsorbed As to residual As in soil, whereas FeBC-2 only had a good adsorption effect on As. The adsorption capacity of BC, FeBC-1, and FeBC-2 for Cd were proportional to their CEC. The adsorption and removal effect of BC on Cd was better than that of FeBC-1 and FeBC-2, which could significantly promote the conversion of soil acid-soluble Cd to stable residue Cd.


Subject(s)
Arsenic , Iron , Cadmium , Soil
9.
Stem Cell Res Ther ; 14(1): 180, 2023 07 24.
Article in English | MEDLINE | ID: mdl-37488601

ABSTRACT

BACKGROUND: Mesenchymal stromal cells-derived small extracellular vesicles (MSC-sEVs) have recently attracted considerable attention because of their therapeutic potential in various immune diseases. We previously reported that MSC-sEVs could exert immunomodulatory roles in allergic airway inflammation by regulating group 2 innate lymphoid cell (ILC2) and dendritic cell (DC) functions. Therefore, this study aimed to investigate the indirect effects of MSC-sEVs on ILC2s from patients with allergic rhinitis (AR) via DCs. METHODS: Here, we isolated sEVs from induced pluripotent stem cells-MSCs using anion-exchange chromatography and mature DCs (mDCs) were treated with MSC-sEVs. sEV-mDCs were co-cultured with peripheral blood mononuclear cells from patients with AR or purified ILC2s. The levels of IL-13 and GATA3 in ILC2s were examined by flow cytometry. Bulk RNA sequence for mDCs and sEV-mDCs was employed to further probe the potential mechanisms, which were then validated in the co-culture systems. RESULTS: sEV-mDCs showed impaired capacity in priming the levels of IL-13 and GATA3 in ILC2s when compared with mDCs. Furthermore, there was higher PGE2 and IL-10 production from sEV-mDCs, and the blockade of them especially the former one reversed the inhibitory effects of sEV-mDCs. CONCLUSIONS: We demonstrated that MSC-sEVs were able to dampen the activating effects of mDCs on ILC2s in patients with AR. Mechanismly, the PGE2-EP2/4 axis played an essential role in the immunomodulatory effects of sEV-mDCs on ILC2s. Herein, we provided new insights into the mechanism underlying the therapeutic effects of MSC-sEVs in allergic airway inflammation.


Subject(s)
Extracellular Vesicles , Rhinitis, Allergic , Humans , Immunity, Innate , Dinoprostone , Interleukin-13 , Leukocytes, Mononuclear , Lymphocytes , Inflammation , Dendritic Cells
10.
J Alzheimers Dis ; 94(3): 1093-1103, 2023.
Article in English | MEDLINE | ID: mdl-37355900

ABSTRACT

BACKGROUND: Accessible measurements for the early detection of mild cognitive impairment (MCI) due to Alzheimer's disease (AD) are urgently needed to address the increasing prevalence of AD. OBJECTIVE: To determine the benefits of a composite MemTrax Memory Test and AD-related blood biomarker assessment for the early detection of MCI-AD in non-specialty clinics. METHODS: The MemTrax Memory Test and Montreal Cognitive Assessment were administered to 99 healthy seniors with normal cognitive function and 101 patients with MCI-AD; clinical manifestation and peripheral blood samples were collected. We evaluated correlations between the MemTrax Memory Test and blood biomarkers using Spearman's rank correlation analyses and then built discrimination models using various machine learning approaches that combined the MemTrax Memory Test and blood biomarker results. The models' performances were assessed according to the areas under the receiver operating characteristic curve. RESULTS: The MemTrax Memory Test and Montreal Cognitive Assessment areas under the curve for differentiating patients with MCI-AD from the healthy controls were similar. The MemTrax Memory Test strongly correlated with phosphorylated tau 181 and amyloid-ß42/40. The area under the curve for the best composite MemTrax Memory Test and blood biomarker model was 0.975 (95% confidence interval: 0.950-0.999). CONCLUSION: Combining MemTrax Memory Test and blood biomarker results is a promising new technique for the early detection of MCI-AD.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/diagnosis , Cognitive Dysfunction/psychology , tau Proteins , Biomarkers , Early Diagnosis , Amyloid beta-Peptides
11.
J Nanobiotechnology ; 21(1): 135, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37101174

ABSTRACT

Senescence of vascular smooth muscle cells (VSMCs) contributes to the formation of abdominal aortic aneurysm (AAA). Although mesenchymal stem cell exosomes (MSC-EXO) have been confirmed to restrict the development of AAA, their biological activity depends largely on the physiological state of the MSCs. This study aimed to compare the effects of adipose-derived MSC-EXO from healthy donors (HMEXO) and AAA patients (AMEXO) on senescence of VSMCs in AAA and explore the underlying mechanisms. An ApoE-/- mouse model of AAA was used to investigate the therapeutic effects of HMEXO, AMEXO or miR-19b-3p-AMEXO on AAA development. This in vitro model of AAA was established by treating VSMCs with Ang II (Angiotensin II). The senescence of VSMCs was determined by senescence-associated ß-galactosidase (SA-ß-gal) staining. The morphology of mitochondria in VSMCs was examined by MitoTracker staining. HMEXO exhibited superior capacity compared with AMEXO to inhibit VSMC senescence and attenuate AAA formation in Ang II-treated ApoE-/- mice. In vitro, both AMEXO and HMEXO inhibited Ang II-induced VSMC senescence via downregulation of mitochondrial fission. Notably, compared with HMEXO, the ability of AMEXO to inhibit VSMC senescence was significantly decreased. miRNA sequencing and the expression of miR-19b-3p was significantly decreased in AMEXO compared with HMEXO. Luciferase assay suggested that MST4 (Mammalian sterile-20-like kinase 4) is a potential target of miR-19b-3p. Mechanistically, miR-19b-3p in HMEXO ameliorated VSMC senescence by inhibiting mitochondrial fission via regulation of the MST4/ERK/Drp1 signaling pathway. Overexpression of miR-19b-3p in AMEXO improved their beneficial effect on AAA formation. Our study reveals that MSC-exosomal miR-19b-3p exerts protective effects against Ang II-induced AAA and VSMC senescence via regulation of the MST4/ERK/Drp1 pathway. The pathological state of AAA patients alters the miRNA components of AMEXO and impairs their therapeutic benefits.


Subject(s)
Aortic Aneurysm, Abdominal , Exosomes , Mesenchymal Stem Cells , MicroRNAs , Animals , Mice , Aortic Aneurysm, Abdominal/genetics , Aortic Aneurysm, Abdominal/metabolism , Aortic Aneurysm, Abdominal/pathology , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Exosomes/metabolism , Mammals/genetics , Mammals/metabolism , Mesenchymal Stem Cells/metabolism , Mice, Knockout, ApoE , MicroRNAs/genetics , MicroRNAs/metabolism , Humans
12.
J Control Release ; 357: 1-19, 2023 05.
Article in English | MEDLINE | ID: mdl-36958402

ABSTRACT

Mesenchymal stem cells (MSCs) have shown promise for the therapy of cerebral ischemia in animal studies and clinical trials, yet their clinical application still faces many challenges. Utilizing small extracellular vesicles (sEVs) may overcome these challenges. In the study, we overexpressed brain-derived neurotrophic factor (BDNF) in cultured MSCs and purified sEVs using anion exchange chromatography. In an ischemic stroke mouse model, sEVs selectively targeted the peri-infarct region after intranasal administration, and BDNF loading enhanced the efficacy of sEVs in improved functional behavior, neural repair indicated by infarct volume reduction, increased neurogenesis, angiogenesis, synaptic plasticity, and fiber preservation, as well as decreased inflammatory-cytokine expression and glial response. Intranasal administration of sEVs and BDNF-sEVs resulted in upregulation of neuroprotection-related genes and downregulation of inflammation-related genes, and BDNF-sEVs treatment activated the BDNF/TrkB signaling in the ischemic brain. Transcriptomic and proteomic analysis of sEVs and BDNF-sEVs disclosed abundant proteins and miRNAs involved in neuroprotection and anti-inflammation, and BDNF-sEVs showed different characteristics from sEVs. In conclusion, intranasal delivery of sEVs-loaded BDNF is a promising alternative strategy for the therapy of cerebral ischemia.


Subject(s)
Brain Ischemia , Extracellular Vesicles , Mice , Animals , Brain-Derived Neurotrophic Factor/genetics , Administration, Intranasal , Proteomics , Brain Ischemia/drug therapy , Brain Ischemia/metabolism , Infarction/drug therapy , Extracellular Vesicles/metabolism
13.
Eur J Immunol ; 52(7): 1129-1140, 2022 07.
Article in English | MEDLINE | ID: mdl-35415925

ABSTRACT

Mesenchymal stromal cells (MSCs) are well known for their immunoregulatory roles on allergic inflammation particularly by acting on T cells, B cells, and dendritic cells (DCs). MSC-derived small extracellular vesicles (MSC-sEV) are increasingly considered as one of the main factors for the effects of MSCs on immune responses. However, the effects of MSC-sEV on DCs in allergic diseases remain unclear. MSC-sEV were prepared from the induced pluripotent stem cells (iPSC)-MSCs by anion-exchange chromatography, and were characterized with the size, morphology, and specific markers. Human monocyte-derived DCs were generated and cultured in the presence of MSC-sEV to differentiate the so-called sEV-immature DCs (sEV-iDCs) and sEV-mature DCs (sEV-mDCs), respectively. The phenotypes and the phagocytic ability of sEV-iDCs were analyzed by flow cytometry. sEV-mDCs were co-cultured with isolated CD4+ T cells or peripheral blood mononuclear cells (PBMCs) from patients with allergic rhinitis. The levels of Th1 and Th2 cytokines produced by T cells were examined by ELISA and intracellular flow staining. And the following mechanisms were further investigated. We demonstrated that MSC-sEV inhibited the differentiation of human monocytes to iDCs with downregulation of the expression of CD40, CD80, CD86, and HLA-DR, but had no effects on mDCs with these markers. However, MSC-sEV treatment enhanced the phagocytic ability of mDCs. More importantly, using anti-IL-10 monoclonal antibody or IL-10Rα blocking antibody, we identified that sEV-mDCs suppressed the Th2 immune response by reducing the production of IL-4, IL-9, and IL-13 via IL-10. Furthermore, sEV-mDCs increased the level of Treg cells. Our study identified that mDCs treated with MSC-sEV inhibited the Th2 responses, providing novel evidence of the potential cell-free therapy acting on DCs in allergic airway diseases.


Subject(s)
Extracellular Vesicles , Mesenchymal Stem Cells , Rhinitis, Allergic , Cell Differentiation , Cells, Cultured , Dendritic Cells , Humans , Leukocytes, Mononuclear , Mesenchymal Stem Cells/metabolism , Rhinitis, Allergic/metabolism , Rhinitis, Allergic/therapy
14.
J Extracell Vesicles ; 10(14): e12182, 2021 12.
Article in English | MEDLINE | ID: mdl-34953156

ABSTRACT

The minimal information for studies of extracellular vesicles (EVs, MISEV) is a field-consensus rigour initiative of the International Society for Extracellular Vesicles (ISEV). The last update to MISEV, MISEV2018, was informed by input from more than 400 scientists and made recommendations in the six broad topics of EV nomenclature, sample collection and pre-processing, EV separation and concentration, characterization, functional studies, and reporting requirements/exceptions. To gather opinions on MISEV and ideas for new updates, the ISEV Board of Directors canvassed previous MISEV authors and society members. Here, we share conclusions that are relevant to the ongoing evolution of the MISEV initiative and other ISEV rigour and standardization efforts.


Subject(s)
Extracellular Vesicles/metabolism , Reference Standards , Humans
15.
Front Immunol ; 12: 710372, 2021.
Article in English | MEDLINE | ID: mdl-34691024

ABSTRACT

Background: Allergic rhinitis (AR) is characterized by IgE-mediated mucosa response after exposure to allergens. Extracellular vesicles (EVs) are nano-size vesicles containing biological cargos for intercellular communications. However, the role of plasma EVs in pathogenesis of AR remains largely unknown. Methods: Plasma EVs from patients with AR were isolated, quantified, and characterized. The expression of Der p 1 and antigen-presenting molecules on EVs was determined by Western blot, flow cytometry, or ELISA. PKH26- and CFSE (carboxyfluorescein succinimidyl ester)-stained AR-EVs were used to determine the uptake of EVs by CD4+T cells and their effects on CD4+T cell proliferation, respectively. Results: Plasma EVs in healthy control (HC) and AR patients were similar in the concentration of particles, expression for specific EV markers, and both had structural lipid bilayer. However, the levels of Der p 1 on plasma EVs from both mild and moderate-severe AR patients were significantly higher than that on HC. The levels of antigen-presenting molecules on plasma EVs were similar from three subjects. Moreover, levels of Der p 1 on EVs in plasma, but not nasal secretion, were significantly associated with the symptom score of AR patients and level of plasma IL-13. Additionally, plasma EVs from patients with AR promoted the development of Th2 cells, while no effect was found on CD4+ T-cell proliferation. Conclusions: Plasma EVs derived from patients with AR exhibited antigen-presenting characteristics and promoted differentiation of Th2 cells, thus providing novel understanding of the pathogenesis of AR.


Subject(s)
Antigen Presentation/immunology , Extracellular Vesicles/immunology , Rhinitis, Allergic/immunology , Th2 Cells/cytology , Adult , Antigens, Dermatophagoides/blood , Arthropod Proteins/blood , CD4-Positive T-Lymphocytes/immunology , Cell Differentiation , Cysteine Endopeptidases/blood , Female , Humans , Male , Severity of Illness Index
16.
Int Immunopharmacol ; 101(Pt B): 108233, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34653730

ABSTRACT

The diversity of immune responses in allergic diseases is critically mediated by dendritic cells (DCs), including myeloid and plasmacytoid DCs. Allergen inhalation increased the release of IL-33 from patients with allergic rhinitis (AR), which affecting the downstream cells by binding to its receptor (ST2). However, the effects of inhaled allergens on the expression of ST2 by DCs and IL-33 on the function of mDCs are unknown. The levels of ST2+mDCs and ST2+pDCs in the blood from patients with AR and healthy subjects were examined using flow cytometry. Moreover, the patients were challenged using the allergens and the levels of ST2+mDCs and ST2+pDCs were investigated at different time points. We found that there were higher levels of ST2+ mDCs and ST2+ pDCs in patients with AR, and these levels were further increased 0.5 h after allergen inhalation. Additionally, the type 2 immune response was upregulated after challenge. IL-33 treatment increased the expression of ST2 on mDCs. Our study demonstrated that ST2 was upregulated on DCs after allergen inhalation and that mDCs responded directly to IL-33 through ST2, suggesting that the IL-33/ST2 axis might play an important role in the pathogenesis of allergic rhinitis by DCs.


Subject(s)
Allergens/toxicity , Dendritic Cells/drug effects , Gene Expression Regulation/drug effects , Interleukin-1 Receptor-Like 1 Protein/metabolism , Myeloid Cells/drug effects , Rhinitis, Allergic/metabolism , Administration, Inhalation , Adult , Dendritic Cells/metabolism , Female , Humans , Interleukin-1 Receptor-Like 1 Protein/genetics , Interleukin-33 , Male , Myeloid Cells/metabolism
17.
Stem Cells ; 39(7): 975-987, 2021 07.
Article in English | MEDLINE | ID: mdl-33662168

ABSTRACT

Group 2 innate lymphoid cells (ILC2s) are recognized as key controllers and effectors of type 2 inflammation. Mesenchymal stem cells (MSCs) have been shown to alleviate type 2 inflammation by modulating T lymphocyte subsets and decreasing TH 2 cytokine levels. However, the effects of MSCs on ILC2s have not been investigated. In this study, we investigated the potential immunomodulatory effects of MSCs on ILC2s in peripheral blood mononuclear cells (PBMCs) from allergic rhinitis patients and healthy subjects. We further investigated the mechanisms involved in the MSC modulation using isolated lineage negative (Lin- ) cells. PBMCs and Lin- cells were cocultured with induced pluripotent stem cell-derived MSCs (iPSC-MSCs) under the stimulation of epithelial cytokines IL-25 and IL-33. And the ILC2 levels and functions were examined and the possible mechanisms were investigated based on regulatory T (Treg) cells and ICOS-ICOSL pathway. iPSC-MSCs successfully decreased the high levels of IL-13, IL-9, and IL-5 in PBMCs in response to IL-25, IL-33, and the high percentages of IL-13+ ILC2s and IL-9+ ILC2s in response to epithelial cytokines were significantly reversed after the treatment of iPSC-MSCs. However, iPSC-MSCs were found directly to enhance ILC2 levels and functions via ICOS-ICOSL interaction in Lin- cells and pure ILC2s. iPSC-MSCs exerted their inhibitory effects on ILC2s via activating Treg cells through ICOS-ICOSL interaction. The MSC-induced Treg cells then suppressed ILC2s by secreting IL-10 in the coculture system. This study revealed that human MSCs suppressed ILC2s via Treg cells through ICOS-ICOSL interaction, which provides further insight to regulate ILC2s in inflammatory disorders.


Subject(s)
Mesenchymal Stem Cells , T-Lymphocytes, Regulatory , Cytokines/metabolism , Humans , Immunity, Innate , Inducible T-Cell Co-Stimulator Ligand/metabolism , Inducible T-Cell Co-Stimulator Protein/metabolism , Leukocytes, Mononuclear , Lymphocytes , Mesenchymal Stem Cells/metabolism , T-Lymphocytes, Regulatory/metabolism
18.
Mol Immunol ; 128: 89-97, 2020 12.
Article in English | MEDLINE | ID: mdl-33096416

ABSTRACT

There were gender differences in the prevalence and severity of allergic diseases. Group 2 innate lymphoid cells (ILC2s) were recently reported to play a critical role in allergic diseases. We investigated the sex-dependent differences in ILC2-dominant allergic airway inflammation model using T\B cell-deficient mice, and determined the gender differences of ILC2 levels in patients with asthma and allergic rhinitis. Female mice exhibited higher levels of inflammatory infiltration and large production of IL-5 and IL-13, especially for ILC2 levels compared to male mice with the induction of IL-33. However, no significant differences were found for the levels of circulating ILC2s between the genders of patients. The treatment of testosterone significantly decreased the intracellular type 2 cytokines in ILC2s and the proliferation of pure ILC2s in response to epithelial cytokines. Our study suggested the sex differences and the involvement of androgen on ILC2s in allergic diseases.


Subject(s)
Immunity, Innate/immunology , Inflammation/immunology , Lung/immunology , Lymphocytes/immunology , Adult , Allergens/immunology , Animals , Asthma/immunology , B-Lymphocytes/immunology , Cytokines/immunology , Female , Humans , Hypersensitivity/immunology , Interleukin-33/immunology , Interleukin-5/immunology , Male , Mice , Mice, Inbred C57BL , Sex Characteristics , T-Lymphocytes/immunology
19.
Stem Cell Res Ther ; 11(1): 222, 2020 06 08.
Article in English | MEDLINE | ID: mdl-32513306

ABSTRACT

BACKGROUND: Machado-Joseph disease is the most common autosomal dominant hereditary ataxia worldwide without effective treatment. Mesenchymal stem cells (MSCs) could slow the disease progression, but side effects limited their clinical application. Besides, MSC-derived exosomes exerted similar efficacy and have many advantages over MSCs. The aim of this study was to examine the efficacy of MSC-derived exosomes in YACMJD84.2 mice. METHODS: Rotarod performance was evaluated every 2 weeks after a presymptomatic administration of intravenous MSC-derived exosomes twice in YACMJD84.2 mice. Loss of Purkinje cells, relative expression level of Bcl-2/Bax, cerebellar myelin loss, and neuroinflammation were assessed 8 weeks following treatment. RESULTS: MSC-derived exosomes were isolated and purified through anion exchange chromatography. Better coordination in rotarod performance was maintained for 6 weeks in YACMJD84.2 mice with exosomal treatment, compared with those without exosomal treatment. Neuropathological changes including loss of Purkinje cells, cerebellar myelin loss, and neuroinflammation were also attenuated 8 weeks after exosomal treatment. The higher relative ratio of Bcl-2/Bax was consistent with the attenuation of loss of Purkinje cells. CONCLUSIONS: MSC-derived exosomes could promote rotarod performance and attenuate neuropathology, including loss of Purkinje cells, cerebellar myelin loss, and neuroinflammation. Therefore, MSC-derived exosomes have a great potential in the treatment of Machado-Joseph disease.


Subject(s)
Exosomes , Machado-Joseph Disease , Mesenchymal Stem Cells , Animals , Cerebellum , Disease Models, Animal , Machado-Joseph Disease/genetics , Mice
20.
Cell Death Dis ; 11(6): 409, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32483121

ABSTRACT

Allergic airway inflammation is a major public health disease that affects up to 300 million people in the world. However, its management remains largely unsatisfactory. The dysfunction of pulmonary macrophages contributes greatly to the development of allergic airway inflammation. It has been reported that small extracellular vesicles derived from mesenchymal stromal cells (MSC-sEV) were able to display extensive therapeutic effects in some immune diseases. This study aimed to investigate the effects of MSC-sEV on allergic airway inflammation, and the role of macrophages involved in it. We successfully isolated MSC-sEV by using anion exchange chromatography, which were morphologically intact and positive for the specific EV markers. MSC-sEV significantly reduced infiltration of inflammatory cells and number of epithelial goblet cells in lung tissues of mice with allergic airway inflammation. Levels of inflammatory cells and cytokines in bronchoalveolar lavage fluid were also significantly decreased. Importantly, levels of monocytes-derived alveolar macrophages and M2 macrophages were significantly reduced by MSC-sEV. MSC-sEV were excreted through spleen and liver at 24 h post-administration in mice, and were able to be taken in by macrophages both in vivo and in vitro. In addition, proteomics analysis of MSC-sEV revealed that the indicated three types of MSC-sEV contained different quantities of proteins and shared 312 common proteins, which may be involved in the therapeutic effects of MSC-sEV. In total, our study demonstrated that MSC-sEV isolated by anion exchange chromatography were able to ameliorate Th2-dominant allergic airway inflammation through immunoregulation on pulmonary macrophages, suggesting that MSC-sEV were promising alternative therapy for allergic airway inflammation in the future.


Subject(s)
Extracellular Vesicles/metabolism , Hypersensitivity/immunology , Hypersensitivity/pathology , Immunomodulation , Inflammation/pathology , Lung/pathology , Macrophages/pathology , Mesenchymal Stem Cells/metabolism , Animals , Cell Differentiation , Cell Polarity , Extracellular Vesicles/ultrastructure , Female , Humans , Induced Pluripotent Stem Cells/metabolism , Inflammation/immunology , Lung/immunology , Macrophages/metabolism , Mice, Inbred BALB C , Models, Biological , Proteome/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...