Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 27(11): 2559-2566, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28431879

ABSTRACT

SAR in the previously described spirocyclic ROMK inhibitor series was further evolved from lead 4 by modification of the spirocyclic core and identification of novel right-side pharmacophores. In this process, it was discovered that the spiropyrrolidinone core with the carbonyl group α to the spirocenter was preferred for potent ROMK activity. Efforts aimed at decreasing hERG affinity within the series led to the discovery of multiple novel right-hand pharmacophores including 3-methoxythiadiazole, 2-methoxypyrimidine, and pyridazinone. The most promising candidate is pyridazinone analog 32 that showed an improved functional hERG/ROMK potency ratio and preclinical PK profile. In vivo evaluation of 32 demonstrated blood pressure lowering effects in the spontaneously hypertensive rat model.


Subject(s)
ERG1 Potassium Channel/metabolism , Potassium Channel Blockers/chemistry , Potassium Channels, Inwardly Rectifying/antagonists & inhibitors , Animals , Disease Models, Animal , Dogs , ERG1 Potassium Channel/antagonists & inhibitors , Half-Life , Hypertension/drug therapy , Potassium Channel Blockers/pharmacokinetics , Potassium Channel Blockers/therapeutic use , Potassium Channels, Inwardly Rectifying/metabolism , Pyrimidines/chemistry , Rats , Rats, Inbred SHR , Spiro Compounds/chemistry , Structure-Activity Relationship , Thiadiazoles/chemistry
2.
Bioorg Med Chem Lett ; 27(9): 2069-2073, 2017 05 01.
Article in English | MEDLINE | ID: mdl-28284804

ABSTRACT

Glucokinase (GK, hexokinase IV) is a unique hexokinase that plays a central role in mammalian glucose homeostasis. Glucose phosphorylation by GK in the pancreatic ß-cell is the rate-limiting step that controls glucose-stimulated insulin secretion. Similarly, GK-mediated glucose phosphorylation in hepatocytes plays a major role in increasing hepatic glucose uptake and metabolism and possibly lowering hepatic glucose output. Small molecule GK activators (GKAs) have been identified that increase enzyme activity by binding to an allosteric site. GKAs offer a novel approach for the treatment of Type 2 Diabetes Mellitus (T2DM) and as such have garnered much attention. We now report the design, synthesis, and biological evaluation of a novel series of 2,5,6-trisubstituted indole derivatives that act as highly potent GKAs. Among them, Compound 1 was found to possess high in vitro potency, excellent physicochemical properties, and good pharmacokinetic profile in rodents. Oral administration of Compound 1 at doses as low as 0.03mg/kg led to robust blood glucose lowering efficacy in 3week high fat diet-fed mice.


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Enzyme Activators/chemistry , Enzyme Activators/therapeutic use , Glucokinase/metabolism , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/therapeutic use , Indoles/chemistry , Indoles/therapeutic use , Allosteric Regulation/drug effects , Animals , Blood Glucose/analysis , Blood Glucose/metabolism , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/metabolism , Drug Design , Enzyme Activation/drug effects , Enzyme Activators/pharmacokinetics , Enzyme Activators/pharmacology , Humans , Hypoglycemic Agents/pharmacokinetics , Hypoglycemic Agents/pharmacology , Indoles/pharmacokinetics , Indoles/pharmacology , Insulin/blood , Insulin/metabolism , Mice , Mice, Inbred C57BL
3.
Bioorg Med Chem Lett ; 27(9): 2063-2068, 2017 05 01.
Article in English | MEDLINE | ID: mdl-28284809

ABSTRACT

Systemically acting glucokinase activators (GKA) have been demonstrated in clinical trials to effectively lower blood glucose in patients with type II diabetes. However, mechanism-based hypoglycemia is a major adverse effect that limits the therapeutic potential of these agents. We hypothesized that the predominant mechanism leading to hypoglycemia is GKA-induced excessive insulin secretion from pancreatic ß-cells at (sub-)euglycemic levels. We further hypothesized that restricting GK activation to hepatocytes would maintain glucose-lowering efficacy while significantly reducing hypoglycemic risk. Here we report the discovery of a novel series of carboxylic acid substituted GKAs based on pyridine-2-carboxamide. These GKAs exhibit preferential distribution to the liver versus the pancreas in mice. SAR studies led to the identification of a potent and orally active hepatoselective GKA, compound 6. GKA 6 demonstrated robust glucose lowering efficacy in high fat diet-fed mice at doses ⩾10mpk, with ⩾70-fold liver:pancreas distribution, minimal effects on plasma insulin levels, and significantly reduced risk of hypoglycemia.


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Enzyme Activators/pharmacology , Glucokinase/metabolism , Hypoglycemic Agents/pharmacology , Pyridines/pharmacology , Animals , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/metabolism , Drug Discovery , Enzyme Activators/chemistry , Enzyme Activators/pharmacokinetics , Enzyme Activators/therapeutic use , Humans , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacokinetics , Hypoglycemic Agents/therapeutic use , Insulin/blood , Liver/drug effects , Liver/metabolism , Mice , Mice, Inbred C57BL , Pancreas/drug effects , Pancreas/metabolism , Pyridines/chemistry , Pyridines/pharmacokinetics , Pyridines/therapeutic use
4.
Bioorg Med Chem Lett ; 19(23): 6780-3, 2009 Dec 01.
Article in English | MEDLINE | ID: mdl-19836229

ABSTRACT

A series of potent piperidine-linked cytosine derivatives were prepared as inhibitors of deoxycytidine kinase (dCK). Compound 9h was discovered to be a potent inhibitor of dCK and shows a good combination of cellular potency and pharmacokinetic parameters. Compound 9h blocks the incorporation of radiolabeled cytosine into mouse T-cells in vitro, as well as in vivo in mice following a T-cell challenge.


Subject(s)
Deoxycytidine Kinase/antagonists & inhibitors , Flucytosine/pharmacology , Protein Kinase Inhibitors/pharmacology , Animals , Drug Design , Flucytosine/chemical synthesis , Flucytosine/chemistry , Humans , Mice , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Stereoisomerism , Structure-Activity Relationship
5.
Bioorg Med Chem Lett ; 19(23): 6784-7, 2009 Dec 01.
Article in English | MEDLINE | ID: mdl-19836232

ABSTRACT

A series of deoxycytidine kinase inhibitors was simultaneously optimized for potency and PK properties. A co-crystal structure then allowed merging this series with a high throughput screening hit to afford a highly potent, selective and orally bioavailable inhibitor, compound 10. This compound showed dose dependent inhibition of deoxycytidine kinase in vivo.


Subject(s)
Deoxycytidine Kinase/antagonists & inhibitors , Deoxycytidine/analogs & derivatives , Drug Design , Protein Kinase Inhibitors/pharmacology , Deoxycytidine/chemical synthesis , Deoxycytidine/chemistry , Deoxycytidine/pharmacology , Dose-Response Relationship, Drug , Models, Molecular , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Stereoisomerism , Structure-Activity Relationship
6.
J Med Chem ; 52(13): 3941-53, 2009 Jul 09.
Article in English | MEDLINE | ID: mdl-19489538

ABSTRACT

During nearly a decade of research dedicated to the study of sphingosine signaling pathways, we identified sphingosine-1-phosphate lyase (S1PL) as a drug target for the treatment of autoimmune disorders. S1PL catalyzes the irreversible decomposition of sphingosine-1-phosphate (S1P) by a retro-aldol fragmentation that yields hexadecanaldehyde and phosphoethanolamine. Genetic models demonstrated that mice expressing reduced S1PL activity had decreased numbers of circulating lymphocytes due to altered lymphocyte trafficking, which prevented disease development in multiple models of autoimmune disease. Mechanistic studies of lymphoid tissue following oral administration of 2-acetyl-4(5)-(1(R),2(S),3(R),4-tetrahydroxybutyl)-imidazole (THI) 3 showed a clear relationship between reduced lyase activity, elevated S1P levels, and lower levels of circulating lymphocytes. Our internal medicinal chemistry efforts discovered potent analogues of 3 bearing heterocycles as chemical equivalents of the pendant carbonyl present in the parent structure. Reduction of S1PL activity by oral administration of these analogues recapitulated the phenotype of mice with genetically reduced S1PL expression.


Subject(s)
Aldehyde-Lyases/antagonists & inhibitors , Autoimmune Diseases/drug therapy , Imidazoles/pharmacology , Administration, Oral , Animals , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Imidazoles/administration & dosage , Imidazoles/therapeutic use , Lymphocyte Count , Mice , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...