Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Language
Publication year range
1.
J. physiol. biochem ; 74(3): 381-393, ago. 2018. ilus, tab, graf
Article in English | IBECS | ID: ibc-178993

ABSTRACT

Differentiation of adipocytes and their aggregation to adipose tissue are critical for mammalian growth and development. MicroRNAs (miRNAs) are a class of endogenous small non-coding RNAs that play important roles in adipogenesis and lipid metabolism. miR-128-3p may contribute to adipose tissue development according to the previous studies. However, the role of miR-128-3p in the process of preadipocyte differentiation and lipid metabolism is not yet understood. The purpose of this research was to investigate the biological function and molecular mechanism of miR-128-3p in 3T3-L1 cells. In the present study, we found that miR-128-3p was downregulated during the process of 3T3-L1 preadipocyte differentiation. Overexpression of miR-128-3p obstructed the expressions of adipogenic marker genes as well as the lipid droplets accumulation and triglyceride content, suggesting the importance of miR-128-3p for adipogenesis. Moreover, miR-128-3p could lead to the retardation of cell proliferation in 3T3-L1 preadipocytes. Further evidences showed that, as a negative regulator of adipogenesis, miR-128-3p could directly target peroxisome proliferator-activated receptor γ (Pparg) which resulted in the suppression of 3T3-L1 preadipocyte differentiation, and miR-128-3p could also bind with SERTA domain containing 2 (Sertad2) which drove triglyceride hydrolysis and lipolysis. In addition, inhibition of Sertad2 with siRNA displayed the same effects as overexpression of miR-128-3p. Our research demonstrated that miR-128-3p impeded 3T3-L1 adipogenesis by targeting Pparg and Sertad2, resulting in the obstruction of preadipocyte differentiation and promotion of lipolysis. Taken together, this study offers profound insight into the mechanism of miRNA-mediated adipogenesis and lipid metabolism


Subject(s)
Animals , Mice , Adipocytes, White/metabolism , Adipogenesis , Gene Expression Regulation, Developmental , Lipolysis , MicroRNAs/metabolism , PPAR gamma/antagonists & inhibitors , Transcription Factors/antagonists & inhibitors , 3' Untranslated Regions , 3T3-L1 Cells , Adipocytes, White/cytology , Biomarkers/metabolism , CCAAT-Enhancer-Binding Proteins , Cell Line , Cricetinae , Transcription Factors/genetics , Transcription Factors/metabolism , Triglycerides/metabolism
2.
J Physiol Biochem ; 74(3): 381-393, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29654510

ABSTRACT

Differentiation of adipocytes and their aggregation to adipose tissue are critical for mammalian growth and development. MicroRNAs (miRNAs) are a class of endogenous small non-coding RNAs that play important roles in adipogenesis and lipid metabolism. miR-128-3p may contribute to adipose tissue development according to the previous studies. However, the role of miR-128-3p in the process of preadipocyte differentiation and lipid metabolism is not yet understood. The purpose of this research was to investigate the biological function and molecular mechanism of miR-128-3p in 3T3-L1 cells. In the present study, we found that miR-128-3p was downregulated during the process of 3T3-L1 preadipocyte differentiation. Overexpression of miR-128-3p obstructed the expressions of adipogenic marker genes as well as the lipid droplets accumulation and triglyceride content, suggesting the importance of miR-128-3p for adipogenesis. Moreover, miR-128-3p could lead to the retardation of cell proliferation in 3T3-L1 preadipocytes. Further evidences showed that, as a negative regulator of adipogenesis, miR-128-3p could directly target peroxisome proliferator-activated receptor γ (Pparg) which resulted in the suppression of 3T3-L1 preadipocyte differentiation, and miR-128-3p could also bind with SERTA domain containing 2 (Sertad2) which drove triglyceride hydrolysis and lipolysis. In addition, inhibition of Sertad2 with siRNA displayed the same effects as overexpression of miR-128-3p. Our research demonstrated that miR-128-3p impeded 3T3-L1 adipogenesis by targeting Pparg and Sertad2, resulting in the obstruction of preadipocyte differentiation and promotion of lipolysis. Taken together, this study offers profound insight into the mechanism of miRNA-mediated adipogenesis and lipid metabolism.


Subject(s)
Adipocytes, White/metabolism , Adipogenesis , Gene Expression Regulation, Developmental , Lipolysis , MicroRNAs/metabolism , PPAR gamma/antagonists & inhibitors , Transcription Factors/antagonists & inhibitors , 3' Untranslated Regions , 3T3-L1 Cells , Adipocytes, White/cytology , Animals , Biomarkers/metabolism , CCAAT-Enhancer-Binding Proteins/antagonists & inhibitors , CCAAT-Enhancer-Binding Proteins/genetics , CCAAT-Enhancer-Binding Proteins/metabolism , Cell Line , Cricetinae , Genes, Reporter , Lipid Droplets/metabolism , Mice , PPAR gamma/genetics , PPAR gamma/metabolism , Point Mutation , RNA/metabolism , RNA Interference , RNA, Small Interfering/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Triglycerides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...