Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 306
Filter
1.
Clin Pharmacokinet ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990504

ABSTRACT

INTRODUCTION: Isoniazid is a first-line antituberculosis agent with high variability, which would profit from individualized dosing. Concentrations of isoniazid at 2 h (C2h), as an indicator of safety and efficacy, are important for optimizing therapy. OBJECTIVE: The objective of this study was to establish machine learning (ML) models to predict the C2h, that can be used for establishing an individualized dosing regimen in clinical practice. METHODS: Published population pharmacokinetic (PopPK) models for adults were searched based on PubMed and ultimately four reliable models were selected for simulating individual C2h datasets under different conditions (demographics, genotype, ethnicity, etc.). Machine learning models were trained on simulated C2h obtained from the four PopPK models. Five different algorithms were used for ML model building to predict C2h. Real-world data were used for predictive performance evaluations. Virtual trials were used to compare ML-optimized doses with PopPK model-optimized doses. RESULTS: Categorical boosting (CatBoost) exhibited the highest prediction ability. Target C2h can be predicted using the ML model combined with the dosing regimen and three covariates (N-acetyltransferase 2 [NAT2] genotypes, weight and race [Asians and Africans]). Real-world data validation results showed that the ML model can achieve an overall prediction accuracy of 93.4%. Using the final ML model, the mean absolute prediction error value decreased by 45.7% relative to the average of PopPK models. Using the ML-optimized dosing regimen, the probability of target attainment increased by 43.7% relative to the PopPK model-optimized dosing regimens. CONCLUSION: Machine learning models were developed with great predictive performance, which can be used to determine the individualized initial dose of isoniazid in adult patients.

2.
Phytomedicine ; 132: 155860, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38991252

ABSTRACT

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer type that urgently requires effective therapeutic strategies. Andrographolide, a labdane diterpenoid compound abundant in Andrographis paniculata, has anticancer effects against various cancer types, but its anticancer activity and mechanism against PDAC remain largely uncharacterized. PURPOSE: This study explores novel drug target(s) and underlying molecular mechanism of andrographolide against PDAC. STUDY DESIGN AND METHODS: The malignant phenotypes of PDAC cells, PANC-1 and MIA PaCa-2 cells, were measured using MTT, clonogenic assays, and Transwell migration assays. A PDAC xenograft animal model was used to evaluate tumor growth in vivo. Western blot, immunofluorescence and immunohistochemistry were used for measuring protein expression. The TCGA database was analyzed to evaluate promoter methylation status, gene expression, and their relationship with patient survival rates. RT-qPCR was used for detecting mRNA expression. Reporter assays were used for detecting signal transduction pathways. Promoter DNA methylation was determined by sodium bisulfite treatment and methylation-specific PCR (MSP). The biological function and role of specific genes involved in drug effects were measured through gene overexpression. RESULTS: Andrographolide treatment suppressed the proliferation and migration of PDAC cells and impaired tumor growth in vivo. Furthermore, andrographolide induced the mRNA and protein expression of zinc finger protein 382 (ZNF382) in PDAC cells. Overexpression of ZNF382 inhibited malignant phenotypes and cancer-associated signaling pathways (AP-1, NF-κB and ß-catenin) and oncogenes (ZEB-1, STAT-3, STAT-5, and HIF-1α). Overexpression of ZNF382 delayed growth of PANC-1 cells in vivo. ZNF382 mRNA and protein expression was lower in tumor tissues than in adjacent normal tissues of pancreatic cancer patients. Analysis of the TCGA database found the ZNF382 promoter is hypermethylated in primary pancreatic tumors which correlates with its low expression. Furthermore, andrographolide inhibited the expression of DNA methyltransferase 3 beta (DNMT3B) and increased the demethylation of the ZNF382 promoter in PDAC cells. Overexpression of DNMT3B attenuated the andrographolide-suppressed proliferation and migration of PDAC cells. CONCLUSION: Our finding revealed that ZNF382 acts as a tumor suppressor gene in pancreatic cancer and andrographolide restores ZNF382 expression to suppress pancreatic cancer, providing a novel molecular target and a promising therapeutic approach for treating pancreatic cancer.

3.
EBioMedicine ; 105: 105221, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38917512

ABSTRACT

BACKGROUND: Accurate prediction of the optimal dose for ß-lactam antibiotics in neonatal sepsis is challenging. We aimed to evaluate whether a reliable clinical decision support system (CDSS) based on machine learning (ML) can assist clinicians in making optimal dose selections. METHODS: Five ß-lactam antibiotics (amoxicillin, ceftazidime, cefotaxime, meropenem and latamoxef), commonly used to treat neonatal sepsis, were selected. The CDSS was constructed by incorporating the drug, patient, dosage, pharmacodynamic, and microbiological factors. The CatBoost ML algorithm was used to build the CDSS. Real-world studies were used to evaluate the CDSS performance. Virtual trials were used to compare the CDSS-optimized doses with guideline-recommended doses. FINDINGS: For a specific drug, by entering the patient characteristics and pharmacodynamic (PD) target (50%/70%/100% fraction of time that the free drug concentration is above the minimal inhibitory concentration [fT > MIC]), the CDSS can determine whether the planned dosing regimen will achieve the PD target and suggest an optimal dose. The prediction accuracy of all five drugs was >80.0% in the real-world validation. Compared with the PopPK model, the overall accuracy, precision, recall, and F1-Score improved by 10.7%, 22.1%, 64.2%, and 43.1%, respectively. Using the CDSS-optimized doses, the average probability of target concentration attainment increased by 58.2% compared to the guideline-recommended doses. INTERPRETATION: An ML-based CDSS was successfully constructed to assist clinicians in selecting optimal ß-lactam antibiotic doses. FUNDING: This work was supported by the National Natural Science Foundation of China; Distinguished Young and Middle-aged Scholar of Shandong University; National Key Research and Development Program of China.

4.
Article in English | MEDLINE | ID: mdl-38874450

ABSTRACT

Chronic hyperglycemia can result in damage to the hippocampus and dysfunction of the blood-brain barrier (BBB), potentially leading to neurological disorders. This study examined the histological structure of the hippocampus and the expression of critical genes associated with the BBB at 2 early stage time points in a streptozotocin-induced diabetes mellitus (DM) mouse model. Routine histology revealed vascular congestion and dilation of Virchow-Robin spaces in the hippocampal CA1 region of the DM group. Neuronal alterations included rounding and swelling and reduction in Nissl bodies and increased apoptosis. Compared to the control group, TJP1 mRNA expression in the DM group was significantly lower (P < .05 or P < .01), while mRNA levels of JAM3, TJP3, CLDN5, CLDN3, and OCLN initially increased and then decreased. At 7, 14, and 21 days, mRNA levels of the receptor for advanced glycation end products (AGER) were greater in the DM group than in the control group (P < .05 or P < .01). These findings indicate that early-stage diabetes may cause structural and functional impairments in hippocampal CA1 in mice. These abnormalities may parallel alterations in the expression of key BBB tight junction molecules and elevated AGER expression in early DM patients.

5.
Acta Physiol (Oxf) ; 240(4): e14124, 2024 04.
Article in English | MEDLINE | ID: mdl-38436094

ABSTRACT

AIM: Exercise intolerance is the central symptom in patients with heart failure with preserved ejection fraction. In the present study, we investigated the adrenergic reserve both in vivo and in cardiomyocytes of a murine cardiometabolic HFpEF model. METHODS: 12-week-old male C57BL/6J mice were fed regular chow (control) or a high-fat diet and L-NAME (HFpEF) for 15 weeks. At 27 weeks, we performed (stress) echocardiography and exercise testing and measured the adrenergic reserve and its modulation by nitric oxide and reactive oxygen species in left ventricular cardiomyocytes. RESULTS: HFpEF mice (preserved left ventricular ejection fraction, increased E/e', pulmonary congestion [wet lung weight/TL]) exhibited reduced exercise capacity and a reduction of stroke volume and cardiac output with adrenergic stress. In ventricular cardiomyocytes isolated from HFpEF mice, sarcomere shortening had a higher amplitude and faster relaxation compared to control animals. Increased shortening was caused by a shift of myofilament calcium sensitivity. With addition of isoproterenol, there were no differences in sarcomere function between HFpEF and control mice. This resulted in a reduced inotropic and lusitropic reserve in HFpEF cardiomyocytes. Preincubation with inhibitors of nitric oxide synthases or glutathione partially restored the adrenergic reserve in cardiomyocytes in HFpEF. CONCLUSION: In this murine HFpEF model, the cardiac output reserve on adrenergic stimulation is impaired. In ventricular cardiomyocytes, we found a congruent loss of the adrenergic inotropic and lusitropic reserve. This was caused by increased contractility and faster relaxation at rest, partially mediated by nitro-oxidative signaling.


Subject(s)
Heart Failure , Ventricular Function, Left , Humans , Male , Animals , Mice , Stroke Volume , Ventricular Function, Left/physiology , Adrenergic Agents , Disease Models, Animal , Nitric Oxide , Mice, Inbred C57BL
6.
Bioorg Med Chem ; 98: 117582, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38171253

ABSTRACT

In this study, we explored a concise and mild synthetic route to produce novel C-14 arylcarbamate derivatives of andrographolide, a known anti-inflammatory and anticancer natural product. Upon assessing their anti-cancer efficacy against pancreatic ductal adenocarcinoma (PDAC) cells, some derivatives showed stronger cytotoxicity against PANC-1 cells than andrographolide. In addition, we demonstrated one derivative, compound 3m, effectively reduced the expression of oncogenic p53 mutant proteins (p53R273H and p53R248W), proliferation, and migration in PDAC lines, PANC-1 and MIA PaCa-2. Accordingly, the novel derivative holds promise as an anti-cancer agent against pancreatic cancer. In summary, our study broadens the derivative library of andrographolide and develops an arylcarbamate derivative of andrographolide with promising anticancer activity against PDAC.


Subject(s)
Carcinoma, Pancreatic Ductal , Diterpenes , Pancreatic Neoplasms , Humans , Tumor Suppressor Protein p53/metabolism , Pancreatic Neoplasms/pathology , Carcinoma, Pancreatic Ductal/pathology , Diterpenes/pharmacology , Cell Line, Tumor
7.
Int J Biol Macromol ; 260(Pt 2): 128818, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38103669

ABSTRACT

Herein, a ß-1,3-D-glucan based yeast cell wall loaded with co-loaded nanoparticles of Rhein (RH) and Emodin (EMO), was developed for the combined treatment of ulcerative colitis (UC) by modulating gut microbiota and the Th17/Treg cell balance. This was achieved through an oral "nano-in-micro" advanced drug delivery system. Specifically, RH was grafted onto the HA chain via disulfide bonds to synthesize a reduction-sensitive carrier material and then used to encapsulate EMO to form nanoparticles with a specific drug ratio (denoted as HA-RH/EMO NPs). As anticipated, HA-RH/EMO NPs were encased within the "nests"-yeast cell wall microparticles (YPs), efficiently reach the colon and then released gradually, this occurs mainly due to the degradation of ß-1,3-D-glucan by ß-glucanase. Additionally, HA-RH/EMO NPs demonstrated a significant reduction-sensitive effect in GSH stimulation evaluations and a remarkable ability to target macrophages in in vitro cell uptake studies. Notably, HA-RH/EMO NYPs reduced inflammatory responses by inhibiting the PI3K/Akt signaling pathway. Even more crucially, the oral delivery and drug combination methods significantly enhanced the regulatory effects of HA-RH/EMO NYPs on gut microbiota and the Th17/Treg balance. Overall, this research marks the first use of YPs to encapsulate two components, RH and EMO, presenting a promising therapeutic strategy for UC.


Subject(s)
Anthraquinones , Colitis, Ulcerative , Emodin , Microbiota , Nanoparticles , Proteoglycans , Humans , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/metabolism , Emodin/pharmacology , Emodin/chemistry , Glucans/therapeutic use , Saccharomyces cerevisiae , Phosphatidylinositol 3-Kinases , Nanoparticles/chemistry
8.
Int J Mol Sci ; 24(23)2023 Nov 21.
Article in English | MEDLINE | ID: mdl-38068895

ABSTRACT

Sepsis results from uncontrolled inflammation, characterized by cytokine storm and immunoparalysis. To assess whether galgravin, a natural lignan isolated from Piper kadsura, can be used to treat sepsis, models of bacterial lipopolysaccharide (LPS)-activated macrophages and LPS-induced endotoxemia mice were used. Galgravin suppressed NF-κB activation in LPS-activated RAW 264.7 macrophages without causing significant cytotoxicity, in which proinflammatory molecules like TNF-α, IL-6, iNOS, and COX-2 were downregulated. In addition, the expression of TNF-α and IL-6 was also suppressed by galgravin in LPS-activated murine bone marrow-derived macrophages. Moreover, galgravin significantly downregulated the mRNA expression of TNF-α, IL-6, and iNOS in the lungs and decreased TNF-α and IL-6 in the serum and IL-6 in the bronchoalveolar lavage fluid of LPS-challenged mice. The COX-2 expression in tissues, including the lung, liver, and kidney, as well as the lung alveolar hemorrhage, was also reduced by galgravin. The present study reveals the anti-inflammatory effects of galgravin in mouse models and implies its potential application in inflammation diseases.


Subject(s)
Endotoxemia , Kadsura , Lignans , Piper , Mice , Animals , Lipopolysaccharides/toxicity , NF-kappa B/metabolism , Kadsura/metabolism , Tumor Necrosis Factor-alpha/metabolism , Endotoxemia/chemically induced , Endotoxemia/drug therapy , Anti-Inflammatory Agents/adverse effects , Interleukin-6/genetics , Interleukin-6/metabolism , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Inflammation/metabolism , Lignans/therapeutic use
9.
J Tradit Complement Med ; 13(6): 538-549, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38020547

ABSTRACT

Background and aim: Xianglian Wan (XLW) as a classic prescription of traditional Chinese medicine protects digestive function; however, few studies have investigated its anti-colorectal cancer effects. This study verified that the effective monomer berberine of XLW plays an antitumo r role by regulating the acetyl-CoA carboxylase (ACC)/fatty acid synthase (FASN) lipid metabolism-related signaling pathway. Experimental procedure: The connection between XLW and FASN was identified through literature mining, bioinformatics and structural biology. In vivo experiments verified the rationality of the antitumor effect of berberine by regulating the ACC/FASN pathway, and in vitro experiments verified the regulatory relationship between berberine and FASN. Results and conclusion: The most frequent Chinese medicine component in XLW was Coptis chinensis. Berberine, the active ingredient of XLW, has a FASN binding site. FASN expression is higher in tumor tissues than in normal tissues. FASN is related to colorectal adenocarcinoma occurrence and patient survival time. Experiments showed that XLW, berberine and orlistat (FASN inhibitor) can cooperate with palmitic acid (PA) to inhibit tumors in mice. Berberine can downregulate FASN and ACC expression in tumor tissues and inhibit the increase in acetyl-CoA, the intermediate product of exogenous PA intake. The mechanism by which berberine inhibits colon cancer cell proliferation by lowering lipids is related to its downregulation of FASN protein expression. The ACC/FASN signaling pathway is a critical pathway through which berberine, the effective monomer of XLW, plays an antitumor role in colon cancer.

10.
Eur J Pharm Sci ; 191: 106598, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37783378

ABSTRACT

Safe and efficacious antiviral therapeutics are in urgent need for the treatment of coronavirus disease 2019. Simnotrelvir is a selective 3C-like protease inhibitor that can effectively inhibit severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We evaluated the safety, tolerability, and pharmacokinetics of dose escalations of simnotrelvir alone or with ritonavir (simnotrelvir or simnotrelvir/ritonavir) in healthy subjects, as well as the food effect (ClinicalTrials.gov Identifier: NCT05339646). The overall incidence of adverse events (AEs) was 22.2% (17/72) and 6.3% (1/16) in intervention and placebo groups, respectively. The simnotrelvir apparent clearance was 135-369 L/h with simnotrelvir alone, and decreased significantly to 19.5-29.8 L/h with simnotrelvir/ritonavir. The simnotrelvir exposure increased in an approximately dose-proportional manner between 250 and 750 mg when co-administered with ritonavir. After consecutive twice daily dosing of simnotrelvir/ritonavir, simnotrelvir had a low accumulation index ranging from 1.39 to 1.51. The area under the curve of simnotrelvir increased 44.0 % and 47.3 % respectively, after high fat and normal diet compared with fasted status. In conclusion, simnotrelvir has adequate safety and tolerability. Its pharmacokinetics indicated a trough concentration above the level required for 90 % inhibition of SARS-CoV-2 in vitro at 750 mg/100 mg simnotrelvir/ritonavir twice daily under fasted condition, supporting further development using this dosage as the clinically recommended dose regimen.


Subject(s)
COVID-19 , Protease Inhibitors , Adult , Humans , Antiviral Agents/adverse effects , Enzyme Inhibitors , Healthy Volunteers , Protease Inhibitors/adverse effects , Ritonavir/therapeutic use , SARS-CoV-2
11.
Int J Biol Macromol ; 253(Pt 7): 127193, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37793517

ABSTRACT

Soft tissue substitutes have been developed to treat gingival recessions to avoid a second surgical site. However, products of pure collagen for clinical application lack their original mechanical strengths and tend to degrade fast in vivo. In this study, a collagen-based scaffold crosslinked with oxidized sodium alginate (OSA-Col) was developed to promote mechanical properties. Compared with commercial products collagen matrix (CM) and collagen sponge (CS), OSA-Col scaffolds presented higher wet-state cyclic compressibility, early anti-degradation ability, similar hemocompatibility and cytocompatibility. Furthermore, in the subcutaneous implantation experiment, OSA2-Col3 scaffolds showed better anti-degradation performance than CS scaffolds and superior neovascularization than CM scaffolds. These results demonstrated that OSA2-Col3 scaffolds had potential as a new soft tissue substitute for the treatment of gingival recessions.


Subject(s)
Gingival Recession , Tissue Scaffolds , Humans , Tissue Engineering/methods , Gingival Recession/surgery , Collagen
12.
J Nanobiotechnology ; 21(1): 321, 2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37679849

ABSTRACT

Ulcerative colitis (UC) faces some barriers in oral therapy, such as how to safely deliver drugs to the colon and accumulate in the colon lesions. Hence, we report an advanced yeast particles system loaded with supramolecular nanoparticles with ROS scavenger (curcumin) to treat UC by reducing oxidative stress state and inflammatory response and accelerating the reprogramming of macrophages. In this study, the dual-sensitive materials are bonded on ß-cyclodextrin (ß-CD), the D-mannose (Man) is modified to adamantane (ADA), and then loaded with curcumin (CUR), to form a functional supramolecular nano-delivery system (Man-CUR NPs) through the host-guest interaction. To improve gastrointestinal stability and colonic accumulation of Man-CUR NPs, yeast cell wall microparticles (YPs) encapsulated Man-CUR NPs to form Man-CUR NYPs via electrostatic adsorption and vacuum extrusion technologies. As expected, the YPs showed the strong stability in complex gastrointestinal environment. In addition, the Man modified supramolecular nanoparticles demonstrated excellent targeting ability to macrophages in the in vitro cellular uptake study and the pH/ROS sensitive effect of Man-CUR NPs was confirmed by the pH/ROS-dual stimulation evaluation. They also enhanced lipopolysaccharide (LPS)-induced inflammatory model in macrophages through downregulation of pro-inflammatory factors, upregulation of anti-inflammatory factors, M2 macrophage polarization, and scavenging the excess ROS. Notably, in DSS-induced mice colitis model, Man-CUR NYPs can reduce the inflammatory responses by modulating TLR4/NF-κB signaling pathways, alleviate oxidative stress by Nrf2/HO-1 signaling pathway, promote macrophages reprogramming and improve the favorable recovery of the damaged colonic tissue. Taken together, this study not only provides strategy for "supramolecular curcumin nanoparticles with pH/ROS sensitive and multistage therapeutic effects" in "advanced yeast particles", but also provided strong theoretical support multi-effect therapy for UC.


Subject(s)
Colitis, Ulcerative , Curcumin , Animals , Mice , Saccharomyces cerevisiae , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Curcumin/pharmacology , Reactive Oxygen Species , Inflammation/drug therapy , Disease Models, Animal
13.
J Transl Med ; 21(1): 615, 2023 09 11.
Article in English | MEDLINE | ID: mdl-37697300

ABSTRACT

BACKGROUND: IFN-λ has been shown to have a dual function in cancer, with its tumor-suppressive roles being well-established. However, the potential existence of a negative ''tumor-promoting'' effect of endogenous IFN-λ is still not fully understood. METHODS: We conducted a comprehensive review and analysis of the perturbation of IFN-λ genes across various cancer types. Correlation coefficients were utilized to examine the relationship between endogenous IFN-λ expression and clinical factors, immune cell infiltration, tumor microenvironment, and response to immunotherapy. Genes working together with IFN-λ were obtained by constructing the correlation-based network related to IFN-λ and the gene interaction network in the KEGG pathway and IFN-λ-related genes obtained from the networks were integrated as candidate markers for the prognosis model. We then applied univariate and multivariate COX regression models to select cancer-specific independent prognostic markers associated with IFN-λ and to investigate risk factors for these genes by survival analysis. Additionally, computational methods were used to analyze the transcriptome, copy number variations, genetic mutations, and methylation of IFN-λ-related patient groups. RESULT: Endogenous expression of IFN-λ has been linked to poor prognosis in cancer patients, with the genes IFN-λ2 and IFN-λ3 serving as independent prognostic markers. IFN-λ acts in conjunction with related genes such as STAT1, STAT2, and STAT3 to affect the JAK-STAT signaling pathway, which promotes tumor progression. Abnormalities in IFN-λ genes are associated with changes in immune checkpoints and immune cell infiltration, which in turn affects cancer- and immune-related pathways. While there is increased immune cell infiltration in patients with IFN-λ expression, this does not improve survival prognosis, as T-cell dysfunction and an inflammatory environment are also present. The amplification of IFNL2 and IFNL3 copy number variants drives specific endogenous expression of IFN-λ in patients, and those with this specific expression have been found to have more mutations in the TP53 gene and lower levels of DNA methylation. CONCLUSION: Our study integrated multi-omics data to provide a comprehensive insight into the dark side of endogenous IFN-λ, providing a fundamental resource for further discovery and therapeutic exploration in cancer.


Subject(s)
Interferon Lambda , Neoplasms , Humans , DNA Copy Number Variations/genetics , Neoplasms/genetics , Cytokines , DNA Methylation/genetics , Tumor Microenvironment
15.
J Tradit Complement Med ; 13(4): 379-388, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37396154

ABSTRACT

Background and aim: Sepsis causes an uncontrolled systemic response characterized by excessive inflammation and immune suppression, leading to multiple organ failure and death. An effective therapeutic strategy for sepsis-related syndromes is urgently needed. Hypericum sampsonii Hance (HS) is a folk herbal plant used to treat arthritis and dermatitis, but the anti-inflammatory properties of HS and its related compounds have rarely been investigated. In this study, we aimed to explore the anti-inflammatory effects of HS. Experimental procedure: Models of bacterial lipopolysaccharide (LPS)-induced activated macrophages and endotoxemia mice were used, in which the TLR4/NF-κB signaling pathway is upregulated to trigger inflammatory responses. The HS extract (HSE) was delivered into LPS-induced endotoxemia mice via oral administration. Three compounds were purified using column chromatography and preparative thin layer chromatography and were validated by physical and spectroscopic data. Results: HSE suppressed NF-κB activation and proinflammatory molecules (TNF-α, IL-6, iNOS) in LPS-activated RAW 264.7 macrophages. Furthermore, oral administration of HSE (200 mg/kg) to LPS-treated mice improved the survival rate, restored body temperature, decreased TNF-α and IL-6 in serum, and reduced IL-6 expression in bronchoalveolar lavage fluid (BALF). In lung tissues, HSE reduced LPS-induced leukocyte infiltration and the expression of proinflammatory molecules (TNF-α, IL-6, iNOS, CCL4 and CCL5). Three pure compounds isolated from HSE, including 2,4,6-trihydroxybenzophenone-4-O-geranyl ether, 1-hydroxy-7 methoxyxanthone and euxanthone, were demonstrated to exhibit anti-inflammatory activities in LPS-stimulated RAW 264.7 macrophages. Conclusion: The present study demonstrated the anti-inflammatory effects of HS in vitro and in vivo. Further clinical studies of HS in human sepsis are warranted.

16.
Zhongguo Zhong Yao Za Zhi ; 48(14): 3793-3805, 2023 Jul.
Article in Chinese | MEDLINE | ID: mdl-37475071

ABSTRACT

This study aims to explore the core connotation of the compatibility of Aconiti Lateralis Radix Praeparata(Fuzi)-Glycyrrhizae Radix et Rhizoma(Gancao) herb pair under physiological and pathological conditions. The biochemical indicators of serum/myocardial tissue, pathological changes of the myocardial tissue, and serum metabolic profiles of normal rats and heart failure model rats treated with Fuzi Decoction and Fuzi Gancao Decoction were determined. Network pharmacology and metabolomics were employed to establish the metabolite-target-pathway network for Glycyrrhizae Radix et Rhizoma in enhancing the efficacy and reducing the toxicity of Aconiti Lateralis Radix Praeparata, Western blotting was employed to verify the representative pathways in the network. The results showed that both decoctions lowered the levels of creatine kinase and other indicators and mitigate myocardial pathological injury in model rats. However, they caused the abnormal rises in creatine kinase and other indicators and myocardial pathological injury in normal rats. The results indicated that the compatibility reduced the toxicity in normal rats and enhanced the efficacy in model rats. The results of metabolomics showed that Fuzi Gancao Decoction recovered more metabolites in model rats and had weaker effect on interfe-ring with the metabolites in normal rats than Fuzi Decoction. The association analysis showed that the network of Glycyrrhizae Radix et Rhizoma enhancing the efficacy of Aconiti Lateralis Radix Praeparata involved 112 metabolites, 89 targets, and 15 pathways, including calcium and cAMP signaling pathways. The network of Glycyrrhizae Radix et Rhizoma reducing the cardiotoxicity of Aconiti Lateralis Radix Praeparata involved 36 metabolites, 59 targets, and 11 pathways, including adrenergic signaling and tricarboxylic acid cycle in cardiomyocytes. The experimental results of protein expression verified the reliability of the association analysis. This study demonstrated that the core connotation of the herb pair of Aconiti Lateralis Radix Praeparata-Glycyrrhizae Radix et Rhizoma changed under physio-logical and pathological states, and the compatibility results of enhancing efficacy and reducing toxicity were achieved with different metabolic pathways and biological processes.


Subject(s)
Aconitum , Drugs, Chinese Herbal , Glycyrrhiza , Rats , Animals , Network Pharmacology , Reproducibility of Results , Drugs, Chinese Herbal/pharmacology , Creatine Kinase
17.
Neuropathol Appl Neurobiol ; 49(4): e12924, 2023 08.
Article in English | MEDLINE | ID: mdl-37461203

ABSTRACT

AIMS: Synaptic strength depends strongly on the subsynaptic organisation of presynaptic transmitter release and postsynaptic receptor densities, and their alterations are expected to underlie pathologies. Although synaptic dysfunctions are common pathogenic traits of Alzheimer's disease (AD), it remains unknown whether synaptic protein nano-organisation is altered in AD. Here, we systematically characterised the alterations in the subsynaptic organisation in cellular and mouse models of AD. METHODS: We used immunostaining and super-resolution stochastic optical reconstruction microscopy imaging to quantitatively examine the synaptic protein nano-organisation in both Aß1-42-treated neuronal cultures and cortical sections from a mouse model of AD, APP23 mice. RESULTS: We found that Aß1-42-treatment of cultured hippocampal neurons decreased the synaptic retention of postsynaptic scaffolds and receptors and disrupted their nanoscale alignment to presynaptic transmitter release sites. In cortical sections, we found that while GluA1 receptors in wild-type mice were organised in subsynaptic nanoclusters with high local densities, receptors in APP23 mice distributed more homogeneously within synapses. This reorganisation, together with the reduced overall receptor density, led to reduced glutamatergic synaptic transmission. Meanwhile, the transsynaptic alignment between presynaptic release-guiding RIM1/2 and postsynaptic scaffolding protein PSD-95 was reduced in APP23 mice. Importantly, these reorganisations were progressive with age and were more pronounced in synapses in close vicinity of Aß plaques with dense cores. CONCLUSIONS: Our study revealed a spatiotemporal-specific reorganisation of synaptic nanostructures in AD and identifies dense-core amyloid plaques as the major local inductor in APP23 mice.


Subject(s)
Alzheimer Disease , Mice , Animals , Alzheimer Disease/pathology , Synapses/pathology , Neurons/pathology , Synaptic Transmission/physiology , Amyloid beta-Peptides/metabolism , Disease Models, Animal , Mice, Transgenic
18.
Teach Learn Nurs ; 18(3): e72-e78, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37360268

ABSTRACT

The Coronavirus disease 2019 (COVID-19) pandemic has had an unprecedented impact on health-care education. However, the relationship between changes in nursing internships in Taiwan during the COVID-19 pandemic and outcome in the national registered nurse (RN) licensure exam for new nursing graduates is underexplored. The study was to explore the predictors of first-attempt success in the RN licensure exam in 2022. A retrospective review of secondary data was employed in this study. Adjusted binary logistic regression was used to analyze data. A convenience sample of 78 new graduates attempted the exam. Of these graduates, 87.2% passed the RN licensure exam. Age was the main predictor of exam success, followed by grand mean academic score and total alternative (nontraditional in-person) internship hours. Compared with those who failed the exam, the graduates who passed the exam were significantly more likely to be younger, have better academic performance, and have engaged in more alternative internship hours. Nursing faculties should consider implementing supportive strategies early for students who are underperforming or those who are older than their classmates on average to help them pass the RN exam on the first attempt. The optimal duration and long-term consequences of alternative nursing internships must be analyzed in further detail.

19.
Front Genet ; 14: 1061364, 2023.
Article in English | MEDLINE | ID: mdl-37152984

ABSTRACT

Cancer remains a formidable challenge in medicine due to its propensity for recurrence and metastasis, which can result in unfavorable treatment outcomes. This challenge is particularly acute for early-stage patients, who may experience recurrence and metastasis without timely detection. Here, we first analyzed the differences in clinical characteristics among the primary tumor, recurrent tumor, and metastatic tumor in different stages of cancer, which may be caused by the molecular level. Moreover, the importance of predicting early cancer recurrence and metastasis is emphasized by survival analyses. Next, we used a multi-omics approach to identify key molecular changes associated with early cancer recurrence and metastasis and discovered that early metastasis in cancer demonstrated a high degree of genomic and cellular heterogeneity. We performed statistical comparisons for each level of omics data including gene expression, mutation, copy number variation, immune cell infiltration, and cell status. Then, various analytical techniques, such as proportional hazard model and Fisher's exact test, were used to identify specific genes or immune characteristics associated with early cancer recurrence and metastasis. For example, we observed that the overexpression of BPIFB1 and high initial B-cell infiltration levels are linked to early cancer recurrence, while the overexpression or amplification of ANKRD22 and LIPM, mutation of IGHA1 and MUC16, high fibroblast infiltration level, M1 polarization of macrophages, cellular status of DNA repair are all linked to early cancer metastasis. These findings have led us to construct classifiers, and the average area under the curve (AUC) of these classifiers was greater than 0.75 in The Cancer Genome Atlas (TCGA) cancer patients, confirming that the features we identified could be biomarkers for predicting recurrence and metastasis of early cancer. Finally, we identified specific early sensitive targets for targeted therapy and immune checkpoint inhibitor therapy. Once the biomarkers we identified changed, treatment-sensitive targets can be treated accordingly. Our study has comprehensively characterized the multi-omics characteristics and identified a panel of biomarkers of early cancer recurrence and metastasis. Overall, it provides a valuable resource for cancer recurrence and metastasis research and improves our understanding of the underlying mechanisms driving early cancer recurrence and metastasis.

20.
Allergy Asthma Immunol Res ; 15(4): 512-525, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37153980

ABSTRACT

PURPOSE: The abnormal expression of tight junction (TJ) plays a vital role in the pathogenesis of chronic rhinosinusitis with nasal polyps (CRSwNP). However, there is no appropriate tool to distinguish and diagnose epithelial barrier defects in clinical practice. This study aimed to evaluate the predictive value of claudin-3 for epithelial barrier dysfunction in CRSwNP. METHODS: In this study, TJ protein levels were evaluated by real-time quantitative polymerase chain reaction, immunofluorescent, and immunohistochemistry staining in control subjects and CRSwNP patients. The receiver operating characteristic (ROC) curve was created to assess the predictive value of TJ breakdown in clinical outcomes. In vitro, human nasal epithelial cells were cultured at the air-liquid interface to analyze the transepithelial electrical resistance (TER) level. RESULTS: The expression levels of occludin, tricellulin, claudin-3, and claudin-10 were decreased (all P < 0.05), and those of claudin-1 was increased (P < 0.05) in CRSwNP patients as compared to healthy subjects. Additionally, claudin-3 and occludin levels were negatively correlated with the computed tomography score in CRSwNP (all P < 0.05), and the ROC curve indicated that the claudin-3 level had the most predictive accuracy in evaluating epithelial barrier disruption (area under the curve = 0.791, P < 0.001). Finally, the time-series analysis showed the highest correlation coefficient between TER and claudin-3 (cross-correlation function = 0.75). CONCLUSION: In this study, we suggest that claudin-3 could be a valuable biomarker for predicting nasal epithelial barrier defects and disease severity in CRSwNP.

SELECTION OF CITATIONS
SEARCH DETAIL
...