Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Publication year range
1.
Mol Med Rep ; 17(1): 771-782, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29115639

ABSTRACT

It has been reported that oligodendrocyte precursor cells (OPCs) may be used to treat contusive spinal cord injury (SCC), and may alter microRNA (miRNA/miR) expression following SCC in rats. However, the association between miRNA expression and the treatment of rats with SCC with OPC transplantation remain unclear. The present study transplanted OPCs into the spinal cord of rats with SCC and subsequently used the Basso, Beattie and Bresnahan (BBB) score to assess the functional recovery and pain scores. An miRNA assay was performed to detect differentially expressed miRNAs in the spinal cord of SCC rats transplanted with OPCs, compared with SCC rats transplanted with medium. Quantitative polymerase chain reaction was used to verify significantly altered miRNA expression levels. The results demonstrated that OPC transplantation was able to improve motor recovery and relieve mechanical allodynia in rats with SCC. In addition, through a miRNA assay, 45 differentially expressed miRNAs (40 upregulated miRNAs and 5 downregulated miRNAs) were detected in the spinal cord of rats in the OPC group compared with in the Medium group. Differentially expressed miRNAs were identified according to the following criteria: Fold change >2 and P<0.05. Furthermore, quantitative polymerase chain reaction was used to verify the most highly upregulated (miR­375­3p and miR­1­3p) and downregulated (miR­363­3p, miR­449a­5p and miR­3074) spinal cord miRNAs that were identified in the miRNA assay. In addition, a bioinformatics analysis of these miRNAs indicated that miR­375 and miR­1 may act primarily to inhibit cell proliferation and apoptosis via transcriptional and translational regulation, whereas miR­363, miR­449a and miR­3074 may act primarily to inhibit cell proliferation and neuronal differentiation through transcriptional regulation. These results suggested that OPC transplantation may promote functional recovery of rats with SCC, which may be associated with the expression of various miRNAs in the spinal cord, including miR­375­3p, miR­1­3p, miR­363­3p, miR­449a­5p and miR­3074.


Subject(s)
MicroRNAs/genetics , Oligodendrocyte Precursor Cells/transplantation , Oligodendroglia/transplantation , Spinal Cord Injuries/therapy , Animals , Cell Differentiation/genetics , Cell Proliferation/genetics , Disease Models, Animal , Gene Expression Regulation , Humans , Oligodendrocyte Precursor Cells/metabolism , Rats , Rats, Sprague-Dawley , Recovery of Function , Spinal Cord/metabolism , Spinal Cord/physiopathology , Spinal Cord Injuries/genetics , Spinal Cord Injuries/physiopathology
2.
Front Neurosci ; 12: 1049, 2018.
Article in English | MEDLINE | ID: mdl-30766469

ABSTRACT

Traumatic brain injury (TBI) often leads to severe neurobehavioral impairment, but the underlying molecular mechanism remains to be elucidated. Here, we collected the sera from 23 patients (aged from 19 to 81 years old, third day after TBI as TBI-third group) subjected to TBI from The First Hospital of Kunming City, and the sera from 22 healthy donors (aged from 18 to 81 years old and as control group). Then, three samples from TBI-third group and three samples from control group were subjected to the protein microarray detection, and bioinformatics analysis. Then, enzyme-linked immunosorbent assay (ELISA) was used to verify significantly altered protein levels. Results showed that, when compared with the control group, all significantly differentially expressed proteins [DEPs, P < 0.05, FDR < 0.05, fold change (FC) > 2] contained 172 molecules in the TBI-third group, in which 65 proteins were upregulated, while 107 proteins were downregulated. The biological processes of these DEPs, mostly happened in the extracellular region and the extracellular region parts, are mainly involved in the regulation of cellular process, signaling and signal transduction, cell communication, response to stimuli, the immune system process and multicellular organismal development. Moreover, the essential molecular functions of them are cytokine activity, growth factor activity and morphogen activity. Additionally, the most significant pathways are enriched in cytokine-cytokine receptor interaction and PI3K-Akt signaling pathways among downregulated proteins, and pathways in cancer and cytokine-cytokine receptor interaction among upregulated proteins. Of these, we focused on the NGF, NT-3, IGF-2, HGF, NPY, CRP, MMP-9, and ICAM-2 with a high number of interactors in Protein-Protein Interaction (PPI) Network indicated by bioinformatics report. Furthermore, using ELISA test, we confirmed that all increase in the levels of NGF, NT-3, IGF-2, HGF, NPY, CRP, MMP-9, and ICAM-2 in the serum from TBI patients. Together, we determined the screened protein expressional profiles in serum for TBI patients, in which the cross-network between inflammatory factors and growth factors may play a crucial role in TBI damage and repair. Our findings could contribute to indication for the diagnosis and treatment of TBI in future translational medicine and clinical practice.

3.
Cell Transplant ; 26(10): 1622-1635, 2017 10.
Article in English | MEDLINE | ID: mdl-29251113

ABSTRACT

Traumatic brain injury (TBI) may cause neurological damage, but an effective therapy and the associated mechanisms of action have not yet been elucidated. A TBI model was established using the modified Feeney method. A2B5+ cells, an oligodendroglial progenitor, were acquired from induced pluripotent stem cells (iPSCs) by mouse embryonic fibroblasts and were transplanted into the injured site. The neurological severity score (NSS) was recorded on 3 d, 7 d, 11 d, 15 d, and 19 d. Seven days after transplantation, oligodendrocytes 2 (Olig2) and myelin basic protein (MBP) were detected by immunohistochemistry (IHC) and Western blot (WB), and long noncoding RNAs (lncRNAs) and messenger RNAs (mRNAs) were screened by microarray technology. Moreover, we took an intersection of the differentially expressed lncRNAs or mRNAs and scanned 10 kb upstream and downstream of the common lncRNAs. Meanwhile, Gene Ontology (GO) and pathway analysis on mRNAs was performed in the A2B5+ iPSC group. A2B5+ iPSCs survived and migrated around the injury site and differentiated into oligodendrocytes. Meanwhile, the increase in Olig2 and MBP were higher in A2B5+ cell-engrafted rats than that in TBI rats. However, the NSSs in the A2B5+ iPSC group were lower than that in the TBI group. Between the TBI and sham groups, 270 lncRNAs and 1,052 mRNAs were differently expressed ( P < 0.05, fold change (FC) > 2), while between the A2B5+ iPSC and TBI groups, 83 lncRNAs and 360 mRNAs were differently expressed ( P < 0.05, FC > 2). Meanwhile, 37 lncRNAs and 195 mRNAs were simultaneously changed in the 2 parts. Using bioinformatic analysis, we found the crucial lncRNA and mRNA were ENSRNOT00000052577 and Kif2c in the TBI brain with cell transplantation. This study demonstrated that A2B5+ iPSC grafts effectively improved neurological function, and the mechanism of action was associated with lncRNA and mRNA expression. Therefore, A2B5+ iPSC transplantation could be considered as a new method for the treatment of TBI, and ENSRNOT00000052577 and Kif2c may be new molecular targets or markers for functional improvement.


Subject(s)
Brain Injuries, Traumatic/genetics , Cell Transplantation/methods , Microarray Analysis/methods , RNA, Long Noncoding/metabolism , RNA, Messenger/metabolism , Animals , Brain Injuries, Traumatic/metabolism , Female , Humans , Rats , Rats, Sprague-Dawley
4.
Zhonghua Kou Qiang Yi Xue Za Zhi ; 40(4): 323-6, 2005 Jul.
Article in Chinese | MEDLINE | ID: mdl-16191379

ABSTRACT

OBJECTIVE: To investigate osteogenesis and integration of osteointergrated dental implants with marrow stromal osteoblast and cancellous bone matrix compound artificial bone (MCCAB) when embedded subcutaneously. METHODS: Osteointergrated dental implants (3 mm in diameter) were inserted into cancellous bone matrix (CBM) columns (5 mm in diameter). Marrow stromal osteoblast (MSO) were cultured and expanded in the column and on the surface. The osteointergrated dental implants loaded MSO-Alginate-CBM compound was formatted. This compound was then implanted subcutaneously in nude mice, and the osteointergrated dental implants loaded Alginate-CBM compounds were implanted as control. The compound was in the mice for 4 to 8 weeks and then harvested and assessed by means of gross observation, X-ray examination, histologic observation and computerized histomorphometry for evaluation of bone formation. RESULTS: The osteogenesis of the osteointergrated dental implants loaded MSO-Alginate-CBM compound was better than that of the the osteointergrated dental implants loaded Alginate-CBM compound. Both intramembranous and cartilaginous osteogenesis was seen but the former was predominant. A large amount of new bone formed around the implant and integrated well with the implant. In the control, only slight cartilage osteogenesis was seen and no integration was found. CONCLUSIONS: The results suggest that the new bone forms in the scaffolds and on the surface of the implant, and integration between the implant and artificial bone also occurs when they are implanted in the nude mice.


Subject(s)
Bone Matrix/transplantation , Dental Implantation, Endosseous/methods , Dental Implants , Osseointegration/physiology , Osteoblasts/transplantation , Osteogenesis/physiology , Animals , Bone Substitutes , Cells, Cultured , Mice , Mice, Nude , Rabbits , Tissue Engineering
SELECTION OF CITATIONS
SEARCH DETAIL
...